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Abstract

This paper studies how learning shapes outcomes in decentralized matching markets

with incomplete information. In a one-to-one worker–firm matching environment where

workers privately observe a payoff-relevant state, firms learn from matching behavior.

Building on recent Bayesian and prior-free theories of stable matching, we experimentally

examine whether stability can emerge through decentralized processes and how learning

drives convergence. We identify three fundamental learning patterns, learning from

conditional evaluation, learning from blocking, and learning from no blocking, each with

fully and partially revealing subtypes, as well as compound learning patterns. Our results

show that most markets converge to stable outcomes, demonstrating the predictive power

of the theory; however, learning from no blocking and full revelation of the state hinder

convergence, and our analysis provides evidence on the mechanisms driving these effects.
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1 Introduction

In two-sided markets such as marriage and labor markets, incomplete information is ubiquitous:

individuals often have only imprecise knowledge about potential partners, and firms may not

know the productivity of their prospective employees. Agents form matches based on what

they know, and also learn from observing others’ matching behavior. A matching market

stabilizes when the interaction between learning and matching settles—that is, when agents’

existing knowledge induces no further changes in matches, and the existing matching reveals

no new information. Recent matching theory predicts plausible market outcomes through

this lens; see Liu et al. (2014) and the literature it pioneers. In this paper, we experimentally

examine whether stable matchings emerge in decentralized markets and how learning shapes

matching outcomes.

Specifically, we analyze a one-to-one matching environment between workers and firms,

where workers are informed of a payoff-relevant state that determines their effort costs and

productivities (and thus both sides’ payoffs), but which may be unknown to firms. Our matching

model with one-sided incomplete information resembles both the prior-free framework of Liu

et al. (2014) and the Bayesian framework of Liu (2020). As shown in these and subsequent

works, incomplete information fundamentally changes the analysis of matching markets relative

to the complete-information benchmark of Gale and Shapley (1962), particularly with respect

to what agents can infer from various possible observations and how such inferences shape

predictions of stable matchings.1

We evaluate market performance relative to a theoretical benchmark, referred to as

a stable outcome, which is consistent with various solution concepts in the recent literature.

Informally, a market outcome consisting of a matching and agents’ knowledge about the true

state is stable if (i) it is individually rational, (ii) it is not blocked by any worker-firm pair, and

(iii) the fact of individual rationality and no blocking pair provides no additional information to

agents. To the best of our knowledge, this is the first experimental test of such stability-based

solution concepts in decentralized matching markets with incomplete information.2

1See Roth and Sotomayor (1990), and more recently Chiappori, Salanie and Che (2024), for comprehensive
surveys of the matching theory with complete information, where agents are fully informed of everyone’s
characteristics and preferences.

2There have been some theoretical progress on this direction; see detailed discussions in Section 5.2. There
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When testing these stability concepts, we pay particular attention to the role of learning

from outcomes, the key new element relative to stability notions under complete information.

In decentralized matching markets, three fundamental learning patterns may arise, each

associated with a distinct type of matching outcome. First, a firm’s (she) hiring decision may

depend on the worker’s (he) willingness to match. If a bona fide match is formed, the firm

refines her knowledge by confirming the worker’s willingness. We refer to this as learning

from conditional evaluation (CE). Second, firms may learn from matches formed between

other worker–firm pairs, as such matching behavior can reveal information about the state.

We call this learning from blocking (LB). Third, firms may learn from the absence of certain

worker-firm matches, since non-matching behavior can also be informative about the state. We

refer to this pattern as learning from no blocking (LNB). These fundamental learning patterns

are summarized in Table 1. We also study compound learning (Compound) that combine

multiple fundamental patterns.

Table 1: Fundamental learning patterns and their subtypes

Fully revealing Partially revealing
Learning from conditional evaluation CE-Full CE-Partial

Learning from blocking LB-Full LB-Partial
Learning from no blocking LNB-Full LNB-Partial

Compound learning CE+LB -
CE+LNB -

Moreover, beyond the learning types, it is important to assess whether full revelation of

the state is essential for stable matching. To this end, we introduce two subtypes within each

fundamental learning pattern, depending on whether learning fully reveals the true state (Full)

or only partially reveals it (Partial). In the fully-revealing case, firms can, in principle, uniquely

pin down the state and match according to ex post payoffs. In contrast, partial-revealing may

still suffice for firms’ matching decisions; for instance, a firm may prefer to match as long as

the potential employee is acceptable, regardless of his exact productivity. Finally, we also

consider two compound learning subtypes: CE+LB and CE+LNB.3

is related experimental work in Pais, Pintér and Veszteg (2020), but our study differs in the role of incomplete
information in bridging theory and experiment; see detailed discussion in Section 5.3.

3We do not include a compound LB+LNB as it requires a larger market than our two-by-two market.
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Our experiment includes eight treatments listed in Table 1, plus a benchmark treatment,

Plain, without learning. The primary treatment variable is the learning pattern, while

the secondary variable is the subtype. We use a within-subject design with 20 parameter

sets covering all market types. Each participant experiences all markets over 20 rounds in

randomized order to mitigate order effects. Matching is decentralized: participants may freely

propose, accept or reject offers, and leave any matches. Matches are finalized once the market

ends, which occurs after a period of inactivity, a similar approach first adopted by Agranov

et al. (2025). Markets feature incomplete information with three possible states, and payoffs

depend on the realized state. Tentative matches are public, while individual actions are private.

Our results show that, in the absence of learning (Plain), markets achieve nearly complete

stable matchings as participants gain experience. Introducing learning patterns has little

effect under CE and LB, but substantially impedes stability under LNB and Compound.

Most failures to reach stable matchings occur in environments involving LNB (i.e., in LNB or

CE+LNB), indicating that learning from the absence of certain matches poses a particularly

severe challenge. A plausible explanation is that LNB requires participants to infer the state

from the absence of certain matches, which is cognitively more demanding than the inference

required in CE or LB; the data support this interpretation.

Furthermore, learning subtypes also matter. Within both LB and LNB, stable matchings

arise more often in the Partial subtype than in the Full subtype. This pattern suggests that

participants rely on simple heuristics, such as focusing on avoiding large losses or counting

favorable states. Because the Partial subtype involves more favorable states under the prior,

and because negative payoffs may loom larger due to loss aversion, these heuristics can generate

systematically better outcomes in Partial than in Full. Together, these findings highlight

that both the structure of learning patterns and the degree of state revelation are critical

determinants of whether decentralized matching markets converge to stable outcomes.

Related literature. Our paper complements two streams of literature: (i) matching theory

with incomplete information and (ii) the decentralized implementation of stable matchings.

We briefly review these literatures here to position our contribution and leave more detailed

discussions to Section 5.
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Since Gale and Shapley (1962) and Shapley and Shubik (1971), a standard assumption in

matching theory has been complete information—that is, agents’ characteristics and preferences

are commonly known. Liu et al. (2014) made a significant breakthrough by introducing

one-sided (worker-side) incomplete information in a prior-free framework that imposes no

prior beliefs on the firm side. Their framework has since stimulated a rich line of research,

including implementation via adaptive matching processes (Chen and Hu, 2020), epistemic

foundations (Pomatto, 2022), two-sided incomplete information (Chen and Hu, 2023; Park,

2025), rural–hospital structures (Peralta, 2025), and efficiency of stable matchings (Chen and

Ho, 2025), among others.

In contrast, Liu (2020) introduces a Bayesian framework in which the stability of

matchings shall be accompanied by the Bayesian consistency of prior, on-path and off-path

beliefs. This approach has likewise been extended to study efficiency of stable matchings and

adaptive matching processes (Chen and Hu, 2024), epistemic foundations (Wang, 2023), lattice

and rural-hospital structures (Hu, 2025), and general cooperative analysis with (two-sided)

incomplete information (Liu, 2023). See also Bikhchandani (2017) and Alston (2020) for an

alternative Bayesian approach. These aforementioned papers together build a sound theoretical

foundation for matching with incomplete information; see Liu (2024) for a survey.4

We contribute to this theoretical literature by experimentally testing stability concepts

and identifying learning patterns in decentralized matching markets. Although we present a

Bayesian theoretical model, our experiment design fits both the prior-free framework following

Liu et al. (2014) and the Bayesian framework following Liu (2020).5

The decentralized matching markets in our experimental design relate both to the

cooperative “path-to-stability” literature, beginning with Roth and Vande Vate (1990), and to

non-cooperative matching theories, such as Pais (2008), Haeringer and Wooders (2011), and

Ferdowsian, Niederle and Yariv (2025). The novelty of our design lies in circumventing the

4Topics loosely related to this literature include stable mechanisms with uncertain preferences of others
(Roth, 1989; Ehlers and Massó, 2007, 2015; Yenmez, 2013), centralized deferred acceptance mechanism
with incomplete information Fernandez, Rudov and Yariv (2022), search and matching (Ferdowsian, 2023),
information acquisition in matching (Immorlica et al., 2020), etc.

5Particularly, our theoretical prediction is consistent with various stability concepts in the recent literature.
See Section 5.1 for detailed discussions. One departure is that, unlike Liu et al. (2014) and Liu (2020), we
assume away transfers, and thus their role as a screening tool, to focus on learning from match formations.
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differences between these two approaches, allowing us to focus directly on learning without

relying on ad hoc assumptions about decentralized environments.6

There are a few experimental papers testing whether markets achieve stable matchings

using a decentralized approach. However, all of these studies test stability concepts derived

under the assumption of complete information (Nalbantian and Schotter, 1995; Otto and Bolle,

2011; Pais, Pintér and Veszteg, 2020; Dolgopolov et al., 2024; He et al., 2024; Agranov et al.,

2025; Echenique, Robinson-Cortés and Yariv, 2025). These papers vary in two dimensions: (i)

whether the information structure is complete information or incomplete information, and (ii)

whether the model features transferable or nontransferable utilities.

Most experimental studies focus on matching markets with transferable utility and

examine stability, efficiency, and surplus allocation (Nalbantian and Schotter, 1995; Otto and

Bolle, 2011; Dolgopolov et al., 2024; He et al., 2024; Agranov et al., 2025). Among them, only

Nalbantian and Schotter (1995) and Agranov et al. (2025) introduce incomplete information.

In both cases, however, incomplete information is implemented as an experimental friction,

while market outcomes are evaluated using theories that assume complete information.

Only Pais, Pintér and Veszteg (2020) and Echenique, Robinson-Cortés and Yariv (2025)

study decentralized matching without transfers. Of these, only Pais, Pintér and Veszteg (2020)

consider incomplete information, where participants know only their own preferences but not

the entire preference profile. Nevertheless, both papers continue to assess outcomes using

complete-information stability concepts.

In summary, our paper contributes to the literature in three ways. First, we provide the

first experimental test of stability concepts in matching markets with incomplete information,

as pioneered by Liu et al. (2014). Second, we show that decentralized interactions can lead to

stable matchings in most market environments. Third, we identify two key factors that make

stability difficult to achieve: (i) when stability requires learning from the absence of blocking,

and (ii) when a greater number of states leads to a loss, rather than a gain, compared to the

default of non-matching.

6See Section 5.2 for detailed discussions of different approaches to decentralized matching.
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2 Matching with Incomplete Information

2.1 The Model

Consider a one-to-one matching market with one-sided incomplete information and without

monetary transfer. Specifically, let I = {1, . . . , n} be a set of workers, and J = {n+1, . . . , n+m}

be a set of firms. A matching is a one-to-one function µ : I ∪ J → I ∪ J that pairs up workers

and firms such that for each i ∈ I and each j ∈ J ,

(1) µ(i) ∈ J ∪ {i},

(2) µ(j) ∈ I ∪ {j}, and

(3) µ(i) = j if and only if µ(j) = i.

If µ(i) = i or µ(j) = j, we say that the agent is unmatched. Assume that µ is observable.

A payoff-relevant state ω is drawn from a finite set Ω according to a prior distribution

β ∈ ∆(Ω). Let aij(ω) ∈ R and bij(ω) ∈ R be the ex post matching values worker i and firm

j receive, respectively, when they are matched, i.e., µ(i) = j, and when the realized state is

ω. Normalize the unmatched values to zero, that is, aii(ω) = bjj(ω) = 0. Assume that each

worker can observe the realized state, whereas firms may not. Instead, the firms’ information

structure is described by a partition profile

Π = (Πn+1, . . . ,Πn+m),

where for each firm j ∈ J , Πj is a partition over Ω; ω′ ∈ Πj(ω) means that if the true state

is ω, firm j cannot distinguish ω from ω′. Each agent can also have publicly observable

payoff-relevant attributes that are summarized by their indices i ∈ I and j ∈ J . Finally, the

functional forms of a : I × J × Ω → R and b : I × J × Ω → R are commonly known.

A market outcome, or simply an outcome, (µ, ω,Π) specifies a matching µ, a realized

state ω which may not be publicly observable, and an information structure Π. As in standard

knowledge models, Π is commonly known; we will revisit the interpretations of Π in Section

2.3, after introducing some key concepts. Here, we illustrate a market outcome first.

Example 1 (An illustration of market outcomes).

Consider a matching market with I = {i1, i2} and J = {j1, j2}. There are three equally
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probable states, i.e., Ω = {ω, ω′, ω′′} and β(ω) = β(ω′) = β(ω′′) = 1/3. The matching values

are given in the table below:

j1 j2

i1

1 2 -10 -10

1 4 -10 -10

-1 -8 -10 -10

i2

-10 -10 1 2

-10 -10 1 4

-10 -10 1 -8

where the numbers in each box correspond to

aij(ω) bij(ω)

aij(ω
′) bij(ω

′)

aij(ω
′′) bij(ω

′′)

.7

Consider two market outcomes with the realized state being ω:

(A) (µ, ω,Π), where µ(i1) = i1, µ(i2) = i2, Πj1 = {{ω, ω′, ω′′}}, and Πj2 = {{ω, ω′, ω′′}}.

(B) (µ̂, ω, Π̂), where µ̂(i1) = j1, µ̂(i2) = i2, Π̂j1 = {{ω, ω′} , {ω′′}}, and Π̂j2 = {{ω, ω′} , {ω′′}}.

In the first outcome, all agents are unmatched and both firms are uninformed; agents’ payoffs

are all zero. In the second, there is a matched pair (i1, j1) and firms are partially informed;

worker i1’s payoff is 1, firm j1’s expected payoff is 3 conditioning on the event Πj1(ω) = {ω, ω′},

whereas worker i2’s and firm j2’s payoffs are both zero.

Remark 1 (Observability of the realized state). We could write ω = (t1, . . . , tn) and interpret

each ti as worker i’s private type, which contains information about his productivity and/or

effort cost. Then there are two kinds of observability to be discussed: (1) whether a worker

can observe other workers’ types, and (2) within a matched pair, whether a firm can observe

her own employee’s type. First, in models with one-sided incomplete information, when there

is no externality, i.e., aij(ω) ≡ aij(ti) and bij(ω) ≡ bij(ti) (Liu, 2020; Chen and Hu, 2024),

7For convenience in discussion, we specify matching values directly in the examples, rather than specifying
the states and functional forms of a and b. We will present matching values in this format in all examples,
unless otherwise specified.
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whether a worker can only observe his own type ti or can observe the entire worker type profile

ω = (t1, . . . , tn) makes no difference in predicting the market outcome. For simplicity, we

assume that each worker can observe the entire state. Second, some papers, e.g., Liu et al.

(2014), assume observability within matched pairs, i.e., each matched firm j can observe the

true type of her employee µ(j), while others may not, e.g., Liu (2020). We follow the latter

here, yet we notice that imposing the observability assumption is straightforward (Hu, 2025).

2.2 Stability of Market Outcomes

Following Chen and Hu (2020, 2023, 2024), and indirectly Liu et al. (2014) and Liu (2020),

stability of a market outcome has three requirements: (1) individual rationality, (2) no blocking

pair (equivalently, no pairwise deviation) and (3) information stability.

Definition 1. An outcome (µ, ω,Π) is individually rational (IR) if agents’ expected payoffs

are nonnegative, i.e.,

aiµ(i)(ω) ≥ 0 for all i ∈ I and

E
[
bµ(j)j

∣∣Πj(ω)
]

≥ 0 for all j ∈ J.

In Example 1, both outcome (A) and outcome (B) are IR.

To define a blocking pair (i, j) for the outcome (µ, ω,Π), where µ(i) ̸= j, we first clarify

firm j’s belief when evaluating her potential employee i. Let Dµ,ij be the set of states under

which worker i benefits from the rematching with firm j, i.e.,

Dµ,ij :=
{
ω̃ ∈ Ω : aij(ω̃) > aiµ(i)(ω̃)

}
. (1)

Intuitively, for the potential deviation by (i, j) to be viable, worker i and firm j must both

expect to benefit from rematching with each other. When firm j calculates her expected payoff,

a state ω̃ is relevant for firm j only when ω̃ ∈ Dµ,ij ; any state that violates the inequality in

(1) is irrelevant due to the worker’s objection. Based on firm j’s initial knowledge Πj(ω) and

the hypothetical knowledge Dµ,ij , firm j’s belief shall be β(·
∣∣Πj(ω) ∩Dµ,ij), which is referred

to as the “off-path” belief in Liu (2020).8

8 See Liu (2020, Section IV-E) for alternative ideas of specifying off-path beliefs.
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Definition 2. An outcome (µ, ω,Π) is blocked by (i, j) if worker i and firm j prefer each

other to their assigned partners under µ, i.e.,

aij(ω) > aiµ(i)(ω) and

E
[
bij

∣∣Πj(ω) ∩Dµ,ij

]
> E

[
bµ(j)j

∣∣Πj(ω) ∩Dµ,ij

]
.

In Example 1, outcome (A) with all agents unmatched is blocked by (i1, j1) since

ai1j1(ω) = 1 > 0 = ai1i1(ω) and

E
[
bi1j1

∣∣Πj1(ω) ∩Dµ,i1j1

]
=

1

2
bi1j1(ω) +

1

2
bi1j1(ω

′) = 3 > 0 = E
[
bj1j1

∣∣Πj1(ω) ∩Dµ,i1j1

]
,

where Πj1(ω) = {ω, ω′, ω′′} and Dµ,i1j1 = {ω, ω′}.

Finally, for an outcome to be “stable”, we introduce the concept of information stability.

It captures the intuition that the absence of individual or pairwise deviation does not convey

additional information to firms (beyond what is already described in the market outcome—Π).

This requirement is crucial because the absence of deviation may indeed provide additional

information to firms, which could in turn lead to a deviation based on firms’ updated beliefs.

Example 2 (Information updating from the absence of deviation).

Consider the matching market in Example 1, but with the following matching-value table:

j1 j2

i1

-1 2 -10 -10

1 4 -10 -10

1 8 -10 -10

i2

-10 -10 1 2

-10 -10 1 -4

-10 -10 1 -8

Consider three market outcomes which differ only in the realized state:

(X) (µ, ω,Π), where µ(i1) = i1, µ(i2) = i2, Πj1 = {{ω, ω′, ω′′}}, and Πj2 = {{ω, ω′, ω′′}}.

(Y) (µ, ω′,Π), where µ(i1) = i1, µ(i2) = i2, Πj1 = {{ω, ω′, ω′′}}, and Πj2 = {{ω, ω′, ω′′}}.

(Z) (µ, ω′′,Π), where µ(i1) = i1, µ(i2) = i2, Πj1 = {{ω, ω′, ω′′}}, and Πj2 = {{ω, ω′, ω′′}}.

All three outcomes are individually rational. According to Definition 2, outcome (X) is not

blocked by (i1, j1) because of worker i1’s objection; it is not blocked by (i2, j2) because firm

10



j2 worries about the terrible matching values −4 and −8 when Dµ,i2j2 = {ω, ω′, ω′′}. Thus,

outcome (X) admits no blocking pair. In contrast, it is straightforward to verify that both

outcomes (Y) and (Z) are blocked by (i1, j1) (but not by (i2, j2)).

Now suppose the true state is ω. We have argued that there should not be any deviation

from outcome (X). However, firm j2 may make the following inference: If the true state were ω′

or ω′′, then a pairwise deviation by (i1, j1) from state (X) should have occurred. The absence

of such deviation, therefore, reveals information to firm j2—that the true state cannot be ω′

or ω′′. Based on her updated belief that the true state must be ω, firm j2 can then form a

blocking pair with worker i2.

To formalize information stability, we define a set of no-deviation states as follows:

Nµ,Π := {ω̃ ∈ Ω : (µ, ω̃,Π) is IR and not blocked} .

Given an outcome (µ, ω,Π) that is IR and not blocked, intuitively, upon noticing the absence

of individual/pairwise deviation, each firm should refine her partition according to the newly

acquired information that the true state must lie in Nµ,Π. For notational convenience, we

denote by Nµ,Π the binary partition induced by Nµ,Π; that is, Nµ,Π := {Nµ,Π, Ω \Nµ,Π}.

Define an operator Hµ(·) (History) to represent the information refinement (i.e., the join

between Π and Nµ,Π) as follows:

Hµ(Π) = (Πn+1 ∨Nµ,Π, . . . ,Πn+m ∨Nµ,Π),

where [Πj ∨Nµ,Π](ω̃) = Πj(ω̃) ∩Nµ,Π(ω̃) for all ω̃ ∈ Ω and all j ∈ J.

In Example 2, Nµ,Π = {ω}, Nµ,Π = {{ω} , {ω′, ω′′}}, and [Hµ(Π)]j2 = {{ω} , {ω′, ω′′}} ≠ Πj2 .

If Hµ(Π) = Π, then the fact of individual rationality and no blocking pair provides no further

information to firms (in addition to their knowledge Π).

Definition 3. An outcome (µ, ω,Π) is stable if it satisfies three requirements:

(1) (µ, ω,Π) is individually rational.

(2) (µ, ω,Π) is not blocked.

(3) information stability holds, that is, Hµ(Π) = Π.9

9The requirement here is slightly stronger but simpler than those in Chen and Hu (2020, 2023, 2024), in
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Say µ is a stable matching at ω if (µ, ω,Π) is a stable outcome for some Π.

In Example 1, suppose the true state is ω. Then an outcome (C) (µ̌, ω, Π̌), where

µ̌(i1) = j1, µ̌(i2) = j2 and Π̌j1 = Π̌j2 =
{{

ω, ω′} ,
{
ω′′}} ,

is stable. Although there are four stable outcomes, they only differ in the information structure

(the other three are strict refinements of Π̌). In other words, µ̌ is a unique stable matching.

Similarly, in Example 2, suppose the true state is ω. Then an outcome (W) (µ̄, ω, Π̄) is

stable, where µ̄(i1) = i1, µ̄(i2) = j2, and Π̄j1 = {{ω} , {ω′, ω′′}}, and Π̄j2 = {{ω} , {ω′, ω′′}}.

Although there are four stable outcomes, they only differ in the information structure (the

other three are strict refinements of Π̄). In other words, µ̄ is a unique stable matching.

2.3 Learning in Dynamic Matching Processes

So far we have introduced a static setting and asked whether or not an exogenously given

putative outcome (µ, ω,Π) is stable. However, like in Chen and Hu (2020, 2024), we can also

interpret both µ and Π as the result of a “learning-and-blocking” process in the matching

market, where they are endogenously determined by market dynamics.10 In what follows, we

introduce three kinds of learning in matching with incomplete information. Our analysis shall

be clear without formally introducing the matching process of Chen and Hu (2020, 2024).

In Example 1, outcome (A) is the autarky where no one is matched and both firms

are uninformed. We have argued that outcome (A) is blocked by (i1, j1). Now if i1 and

j1 indeed form a new match, how would firms update their information? Firm j1’s initial

knowledge is Πj1 = {{ω, ω′, ω′′}}. When she evaluates worker i1, she only considers states in

Dµ,i1j1 = {ω, ω′}, which is a piece of hypothetical information regardless of worker i1’s real

preference. Nevertheless, when the new match (i1, j1) actually takes place, this hypothetical

information is confirmed. Thus, firm j1’s knowledge shall be updated to Π̂j1 = {{ω, ω′}, {ω′′}}.

We refer to this kind of learning as learning from conditional evaluation (CE).

Since matching is publicly observable, firm j2 observes the new match (i1, j1). She can

the sense that their operator Hµ(·) applies only to the common knowledge event containing ω. We adopt this
formulation without losing any learning feature of the matching market, which is the main focus of our paper.

10Naturally, when we discuss market dynamics where bona fide deviations take place along a path, agents’
evaluation of each other shall be based on a state ω (or a partition cell containing it) that is realized and fixed.
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infer that the true state must be either ω or ω′. Therefore, firm j2 shall update her information

to Π̂j2 = {{ω, ω′}, {ω′′}}. We refer to this second kind of learning as learning from blocking

(LB), which generally includes learning from other agents’ individual/pairwise deviation. In

fact, the new match, together with CE and LB, transitions the market outcome from (A)

to (B). With the updated information Π̂j2 , firm j2 forms a blocking pair with worker i2 for

outcome (B), which leads to the stable market outcome (C) where two pairs are matched up.

Finally, we have argued in Example 2 that firm j2, when observing no deviation

(potentially by worker i1 and firm j1), shall update her information from Πj2 = {{ω, ω′, ω′′}}

to Π̄j2 = {{ω} , {ω′, ω′′}}, which leads to a blocking pair with worker i2 for outcome (X). If

they indeed form a new match, the market outcome becomes (W). We refer to this learning

pattern as learning from no blocking (LNB).

Remark 2 (Individual “blocking”). Although we motivate the learning patterns using pairwise

deviations or the absence of them, the idea applies to individual deviations as well. More

precisely, suppose the status quo market outcome already includes a matched pair (i, j). If

they break up, then agents shall learn from this “individual blocking” (LB). Alternatively, if

they do not break up, then agents shall learn from the absence of “individual blocking” or,

equivalently, from IR (LNB).

These three learning patterns are arguably fundamental in a matching market. Moreover,

they are exhaustive if we maintain the cooperative perspective.11 In particular, when we

focus merely on the evolution of publicly observable matches, it is only possible for a firm to

learn from (1) her own matching experience (CE), (2) other agents’ new match or separation

(LB), and (3) absence of other agents’ new match or separation (LNB). Of course, compound

learning patterns based on those fundamental ones are possible.

It has been shown in Chen and Hu (2020, 2024) that if agents keep seeking for better

matches, and those new matches are formed randomly when there are many, a “learning-and-

blocking” process converges to a stable outcome with probability one. Their results provide a

dynamic foundation for incomplete-information stability concepts following Liu et al. (2014)

11That is, we focus on the change of matches while ignore the details such as “who proposes to whom”
or “how long it takes”. As Liu (2023) points out, cooperative modeling, as a reduced form, proves useful in
analyzing complex markets. It makes no excessive ad hoc assumptions while keeps the flexibility of doing so.
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and Liu (2020), which also applies to our setting straightforwardly (with only notational

adaption).

In the current paper, we will design matching markets with the following features:

1. There is a unique stable matching.

2. Suppose agents maximize their matching values. There is a unique “learning-and-blocking”

path from the autarky (no match and no information) to the unique stable matching.

3. Each learning pattern of CE, LB and LNB, as well as some compound learning patterns,

can be uniquely identified by the change of matching in a dynamic market.

Remark 3 (Naive versus sophisticated agents). Chen and Hu (2020, 2024) assume naive/myopic

agents when they prove the convergence of their adaptive market processes, i.e., agents opt to

execute a blocking opportunity whenever it exists. In decentralized matching markets, e.g.,

those in Lauermann and Nöldeke (2014) and Ferdowsian, Niederle and Yariv (2025), agents

may be sophisticated and strategic interactions make the analysis complex. However, in our

setting, this difference is circumvented. Particularly, we design matching markets to make

sure that each agent has only one potential partner. Thus, the choice is merely whether to get

matched, rather than to which partner.12

2.4 Identification of Learning Patterns

We consider eight matching markets in this section. Similar to Examples 1-2, each market

has two workers, two firms and three equally probable states. The basic notations remain

the same, so are omitted. Suppose the true state is ω and all markets start with the autarky

outcome (µ, ω,Π)—that is, µ(i1) = i1, µ(i2) = i2, and Πj1 = Πj2 = {{ω, ω′, ω′′}}. Across the

eight markets, we vary matching values to ensure that in each market a unique evolution path

leading to stability can identify a specific learning pattern, as long as agents maximize their

matching values. Two of them identify the CE pattern, two LB, two LNB, and finally two

compound learning patterns.

We start with two “CE” markets; the matching value tables are displayed in Figure 1.

In market CE-Full (fully revealing), the autarky outcome is blocked by worker i2 and firm j2.

12The fragility issue pointed out by Rudov (2024) is also circumvented.

14



When they form a new match (i2, j2), firm j2 learns from the worker’s willingness that the

true state must be ω (recall that workers can observe the true state). This leads to the unique

stable matching µ̌, where µ̌(i1) = i1 and µ̌(i2) = j2. Market CE-Partial (partially revealing)

slightly differs from CE-Full. There, when a new match (i2, j2) takes place, firm j2 learns from

the worker’s willingness that the true state must be either ω or ω′, but never ω′′. In these two

markets, the learning pattern of CE is uniquely identified by the status of matches, i.e., the

match (i2, j2) is observed if and only if learning from conditional evaluation occurs, whereas

the details such as “who proposes to whom” does not matter.13

j1 j2

i1

-10 -10 -10 -10
-10 -10 -10 -10
-10 -10 -10 -10

i2

-10 -10 1 2
-10 -10 -1 -4
-10 -10 -1 -8

(a) CE-Full

j1 j2

i1

-10 -10 -10 -10
-10 -10 -10 -10
-10 -10 -10 -10

i2

-10 -10 1 2
-10 -10 1 4
-10 -10 -1 -8

(b) CE-Partial

Figure 1: Two markets with learning from conditional evaluation.

Figure 2 shows two “LB” markets. In market LB-Full, the autarky outcome is blocked

by worker i1 and firm j1, but not by i2 and j2 since j2 worries about the negative payoffs

−4 and −8. Forming the new match (i1, j1) does not require firm j1 to conduct conditional

evaluation; she is always willing to deviate from the autarky. However, when the match (i1, j1)

takes place, both firms get fully informed that the true state must be ω. The market outcome

transitions to (µ̂, ω, Π̂), where µ̂(i1) = j1, µ̂(i2) = i2 and Π̂j1 = Π̂j2 = {{ω}, {ω′, ω′′}}. Now

firm j2 can rule out the negative payoffs and form a blocking pair with worker i2, leading to

the unique stable matching µ̌, where µ̌(i1) = j1 and µ̌(i2) = j2. Market LB-Partial is similar,

only that j2 learns partially about the true state ω from the match (i1, j1). Again, the learning

pattern of LB (through firm j2) is uniquely identified by the status of matches: the match

(i2, j2) is observed if and only if learning from blocking (by worker i1 and firm j1) occurs.

Figure 3 shows two “LNB” markets. The market LNB-Full is identical to Example 2, in

13Indeed, firm j2 may attempt to probe worker i2’s willingness, which is frequently recorded in our
experiments.
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j1 j2

i1

1 2 -10 -10
-1 4 -10 -10
-1 8 -10 -10

i2

-10 -10 1 2
-10 -10 1 -4
-10 -10 1 -8

(a) LB-Full

j1 j2

i1

1 2 -10 -10
1 4 -10 -10
-1 8 -10 -10

i2

-10 -10 1 2
-10 -10 1 4
-10 -10 1 -8

(b) LB-Partial

Figure 2: Two markets with learning from blocking.

which the match (i2, j2) is observed if and only if learning from no blocking (potentially by

worker i1 and firm j1) occurs. LNB-Partial differs only in that j2 learns partially about the

true state ω from the absence of match (i1, j1).

j1 j2

i1

-1 2 -10 -10
1 4 -10 -10
1 8 -10 -10

i2

-10 -10 1 2
-10 -10 1 -4
-10 -10 1 -8

(a) LNB-Full

j1 j2

i1

-1 2 -10 -10
-1 4 -10 -10
1 8 -10 -10

i2

-10 -10 1 2
-10 -10 1 4
-10 -10 1 -8

(b) LNB-Partial

Figure 3: Two markets with learning from no blocking.

Finally, we consider two compound learning patterns CE+LB and CE+LNB in Figure 4.

In market CE+LB, the autarky outcome is blocked by worker i1 and firm j1, which does not

require firm j1’s conditional evaluation or learning from the outcome. In contrast, worker i2

and firm j2 do not form a blocking pair for the autarky, since firm j2 worries about the negative

payoff −8, even if she takes into account the hypothetical information Dµ,i2j2 = {ω, ω′′}. When

the match (i1, j1) takes place, firm j2 learns from this blocking that the true state must be

either ω or ω′. Therefore, the market outcome transitions from the autarky to (µ̂, ω, Π̂), where

µ̂(i1) = j1, µ̂(i2) = i2 and Π̂j1 = Π̂j2 = {{ω, ω′}, {ω′′}}. Now firm j2 forms a blocking pair

with worker i2, where Dµ,i2j2 = {ω, ω′′} is confirmed informative. Here, the match (i2, j2)

is observed if and only if learning from blocking (by worker i1 and firm j1) and conditional

evaluation simultaneously occur. Similarly, in market CE+LNB, the match (i2, j2) is observed
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if and only if learning from no blocking (potentially by worker i1 and firm j1) and conditional

evaluation simultaneously occur.

j1 j2

i1

1 2 -10 -10
1 4 -10 -10
-1 8 -10 -10

i2

-10 -10 1 2
-10 -10 -1 -4
-10 -10 1 -8

(a) CE+LB

j1 j2

i1

-1 2 -10 -10
-1 4 -10 -10
1 8 -10 -10

i2

-10 -10 1 2
-10 -10 -1 -4
-10 -10 1 -8

(b) CE+LNB

Figure 4: Two markets with compound learning patterns.

How about the compound learning pattern of LB+LNB? For experimental tractability,

we do not include this case. Indeed, it is impossible to have LB+LNB in a two-worker-two-firm

market, for the following reason: First of all, learning from blocking involves a pair to be

matched, i.e., the “blocking” part, such as (i1, j1). Identifying the effect of learning involves

another pair to be matched, such as (i2, j2), where firm j2 learns. Similarly, learning from no

blocking involves at least one “off-path pair in mind” to be matched such as (i3, j3), which,

however, does not actually occur. Identifying the effect of LNB involves another pair to be

matched, say (i2, j2) or some other pair. Therefore, to have LB+LNB identified, the market

shall have at least three firms, which may make other identifications messy.

Remark 4 (Risk attitude). We assumed that firms are risk neutral. However, the matching

markets we have designed can identify the learning patterns even if firms are risk averse

(whichever extent) or slightly risk seeking. For example, in the market LNB-Partial (Figure

3b), firm j2 is initially uninformed, which implies E [bi2j2 | Πj2(ω)] = 1/3(2 + 4− 8) = −2/3.

Even if firm j2 is slightly risk seeking and puts more weights on the values 2 and 4, she still

prefers not being matched with i2 without learning from no blocking (potentially by (i1, j1)).

When firms are extremely risk averse in that they prefer to be matched only if they can clearly

guarantee a positive (or better) payoff, we shall adopt the prior-free stability concept of Liu

et al. (2014) and Chen and Hu (2020). Other than that, all our experiment design and analysis

carry over.
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3 Experiment Design

3.1 Treatment variables

According to the theory, we focus on two layers of treatment variables. First, our primary

interest lies in the four learning patterns : CE, LB, LNB, and Compound, while Plain serves as

a baseline without any learning technique. Second, within each of the four learning patterns we

introduce two subtypes. For CE, LB, and LNB, the subtypes differ in whether state information

can be fully revealed or partially revealed after learning: Full revelation is possible in CE-full,

LB-Full, and LNB-Full, but not in CE-Partial, LB-Partial, or LNB-Partial. For the Compound

learning pattern, the two subtypes differ in their composition: CE is combined with LB in the

first subtype CE+LB, and with LNB in the second subtype CE+LNB.

Across these two treatment dimensions, we employ 20 payoff parameter sets, shown in

Figures A.1 and A.2, each corresponding to a specific learning pattern and subtype. In both

figures, the first row displays the Plain parameters; the second row presents the CE parameters

(CE-Full on the left, CE-Partial on the right); the third row shows the LB parameters (LB-Full

on the left, LB-Partial on the right); the fourth row contains the LNB parameters (LNB-Full

on the left, LNB-Partial on the right); and the final row reports the Compound parameters

(CE+LB on the left, CE+LNB on the right).

3.2 Treatment orders

We use a within-subject design for our treatment variables: each subject plays all 20 markets

(Figures A.1 and A.2) over 20 rounds, one per round. Subjects differ only in the order in which

these 20 markets are presented. The order is determined by a pre-randomization procedure

that is randomized but subject to three sets of constraints.

First, to control for order effects across learning patterns, we divide the 20 markets into

four blocks of five markets (Blocks A–D). Each block contains exactly one market from each

learning pattern: Plain, CE, LB, LNB, and Compound. The sequence in which these four

blocks are played is varied across matching groups using a Latin-square design, generating

four distinct treatment orders:
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Division of 20 markets/rounds

1 2 3 4

Treatment order 1 Block A Block B Block C Block D

Treatment order 2 Block B Block C Block D Block A

Treatment order 3 Block C Block D Block A Block B

Treatment order 4 Block D Block A Block B Block C

Second, within each block, the five learning patterns follow a structured order. All

blocks begin with the Plain market. The remaining four learning patterns appear in different

orders across blocks, again determined by a Latin-square design. This ensures variation in the

relative positions of CE, LB, LNB, and Compound. The four within-block sequences are:

Five markets/rounds in each block

1 2 3 4 5

Block A Plain CE LB LNB Compound

Block B Plain LB LNB Compound CE

Block C Plain LNB Compound CE LB

Block D Plain Compound CE LB LNB

Third, to control for subtype order effects, the pre-randomization additionally ensures

that, within each learning pattern, the two subtypes appear an equal number of times in the

first 10 rounds and the last 10 rounds. This balances subjects’ exposure to subtypes between

the early and later stages of the experiment.14

3.3 Design details

At the beginning of the experiment, subjects are randomly assigned to matching groups, each

of which has size 12 and is fixed throughout the experiment. Each matching group follows one

of the four treatment orders for the 20 rounds. Within each group, 6 subjects are randomly

14Ideally, the procedure should have been constrained only by the three requirements described above. Due
to a coding error, however, the sequence of the four Plain markets was inadvertently fixed across all treatment
orders, rather than being randomized. As a result, the Plain markets may be affected by order effects and
should be interpreted with caution. Because our primary interest lies in comparing the four learning patterns
and their subtypes, this issue does not materially affect our main research question.
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assigned to the role of worker and 6 to the role of firm; these roles remain fixed throughout

the experiment. Workers are labeled Lemon or Mango, and firms are labeled Yellow or Green.

In each round and in each market, a worker is randomly assigned to be Lemon or Mango

with equal probability, and a firm is randomly assigned to be Yellow or Green with equal

probability.

At the start of each round, 12 subjects in a matching group are randomly partitioned

into three matching markets, each consisting of two workers (one Lemon and one Mango) and

two firms (one Yellow and one Green). The pre-randomization of role assignment ensures that,

across the 20 rounds, each firm-role subject experiences a balanced mix of the easier role (j1

in the model) and the harder role (j2). In every round and in every market, a worker may

match with a firm or stay unmatched; vice versa for firms.

Each matching market features one of three equally likely states: Sunny, Cloudy, or Rainy.

Workers always observe the realized state, whereas firms do not. States are pre-randomized

prior to the experiment and independently drawn across matching markets. All players can

see the payoff matrix of the current matching market, which displays the worker and firm

payoffs for each possible match in each state.15 Each player receives an initial endowment of

10 points. Remaining unmatched yields this endowment only. A finalized matching generates

an additional payoff shown in the payoff matrix, which may be positive or negative.16

Within each market, workers and firms may send proposals to one opponent at a time.

A proposal must be accepted or rejected within 15 seconds; otherwise, it is automatically

rejected. An accepted proposal forms a match. Matches are temporary throughout the market:

players may dissolve existing matches and may proposal to or accept proposals from the other

opponent to form new ones. Whenever a new match forms, any prior matches involving either

player immediately dissolve. Each market runs for at least 60 seconds. A public information

area displays a countdown timer above the payoff matrix. When a match forms or dissolves,

the corresponding payoff cell lights up or dims, and the 60-second timer restarts. The market

ends when the timer reaches zero or when all four players in the market click the "Agree to

15The presentation of the payoff matrix is pre-randomized. For each learning pattern, four games are
assigned to each of the following payoff-change conditions: no change; row change (swapping i1 and i2); column
change (swapping j1 and j2); and change in both rows and columns (swapping both).

16A player’s total payoff in a market is non-negative and equals 10 plus the corresponding matching payoff.
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Proceed to Next Round" button, which becomes available after the initial 60 seconds. All

current temporary matches are finalized at the time the market ends. Subjects do not receive

any feedback between rounds. An illustrative screenshot is provided in Figure B.2.

3.4 Procedures

The experiment was conducted at the Shanghai University of Finance and Economics in

September and October 2025. Subjects were recruited from the Economics Lab’s subject pool

through Ancademy, a platform for social science experiments; most participants accessed the

experiment using the Ancademy mobile app. We ran eight sessions, each with 24 subjects. In

each session, the 24 subjects were randomly divided into two independent matching groups of

12. Treatments were randomized at the matching group level, allowing multiple treatment

orders to be implemented within the same session.

In total, 192 subjects participated, forming 16 independent matching groups of 12, which

were evenly assigned across the four treatment orders. Each subject participated in only one

session. The participant pool consisted primarily of undergraduate students from a variety of

majors.

The experiment was computerized using oTree (Chen, Schonger and Wickens (2016)) and

conducted in Chinese (English translations of the instructions and screenshots are provided

in Appendix B). Upon arrival, subjects were randomly assigned a card indicating their table

number and seated in the corresponding cubicles. All instructions were presented on their

computer screens, and participants completed a set of control questions to ensure comprehension.

The same experimenter oversaw all experimental sessions.

At the end of the experiment, subjects completed a short demographic survey. Four of the

20 rounds were randomly selected for payment. The experimental currency was denominated

directly in Chinese yuan (CNY). Average earnings were 70.51 CNY including a 20 CNY

participation bonus (approximately 10.53 USD). Each session lasted about 50-60 minutes.
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4 Results

In this section, we evaluate experimental performance relative to the predicted stable matching

(i.e., the correct matching) along three dimensions. First, at the market level, we examine

whether the markets converge to the correct matching. Second, at the individual level, we

analyze whether and how participants make mistakes, with particular attention to heterogeneity

across firm roles and to different types of mistakes. Finally, we study market dynamics, focusing

on the time required to reach the correct matching and the sequence in which correct matches

are achieved.

4.1 Market Outcome

4.1.1 Market correct rates by learning pattern

We first examine whether markets reach a stable matching. We classify a 4-player market

as correct if all four players reach their predicted matches. Figure 5 reports the market

correct rate by learning pattern for all 20 rounds (panel (a)) and for the last 10 rounds (panel

(b)). Bars report means and error bars indicate ± one standard error, both computed at the

12-player matching-group level.17

(a) All 20 rounds (b) Last 10 rounds

Figure 5: Market correct rates by learning pattern

17Throughout the Results section, bars show means and error bars indicate ± one standard error, both
computed at the 12-player matching-group level; statistical tests are also conducted at this level.
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As shown in Figure 5a, across all 20 rounds, market correct rates differ substantially

across learning patterns, ranging from 61.98% in LNB to 90.62% in CE. For each of the five

learning patterns, we reject the hypothesis that markets always reach the stable matching.

Comparing Figures 5b and 5a, market correct rates are generally higher in the second half of

the experiment, with the exception of LNB. Specifically, during the last 10 rounds, correct

rates are close to 100% in Plain, CE, and LB, but remain below 80% in LNB and Compound.

Table 2: Market correct rates: pairwise tests across learning patterns

CE LB LNB Compound

Plain 0.071 0.293 < 0.001 < 0.001
CE 0.015 < 0.001 0.002
LB 0.001 0.016

LNB 0.013
(a) All 20 rounds

CE LB LNB Compound

Plain 0.083 0.317 < 0.001 0.002
CE 0.655 < 0.001 0.006
LB < 0.001 0.001

LNB 0.021
(b) Last 10 rounds

Notes: Each cell reports the p-value from a two-sided Wilcoxon signed-rank test performed at the matching-group level
(n = 16).

Next, we test whether achieving the stable matching is more difficult in CE, LB, LNB,

and Compound, compared to Plain. Table 2a reports pairwise Wilcoxon signed-rank tests

across learning patterns using data from all 20 rounds. The results show that market correct

rates in CE and LB do not differ significantly from Plain, whereas correct rates in LNB and

Compound are significantly lower than in Plain. Moreover, correct rates are significantly lower

in LB, LNB, and Compound than in CE, lower in LNB and Compound than in LB, and lowest

in LNB. Turning to the last 10 rounds, Table 2b reports results that largely mirror those from

the full sample, with one exception: the correct rate in LB is no longer significantly lower than

in CE, indicating learning over time in LB.

In sum, at the market level, achieving the stable matching is more difficult in LB, LNB,

and Compound than in Plain, but not in CE. Moreover, while performance in LB converges to

that in Plain as participants gain experience, no comparable improvement is observed in LNB

or Compound. Finally, LNB exhibits greater difficulty than Compound.

Result 1 (market-level correct rates by learning patterns). Across all rounds, no learning

pattern achieves full correct rates. The ranking of market correct rates is

Plain = CE > LB > Compound > LNB.

23



In the last 10 rounds, however, markets under Plain, CE, and LB achieve nearly full correct

rates, and the ranking becomes

Plain = CE = LB > Compound > LNB.

4.1.2 Market correct rates by subtype

In this section, we examine whether market correct rates differ by the secondary treatment

variable, subtype, within each learning pattern. For CE, LB, and LNB, the subtypes differ in

whether players can uniquely and certainly pin down the true state after learning, which is

possible in the subtype Full but not in Partial. For Compound, the two subtypes differ in

their composition, either CE+LB, or CE+LNB. Plain has no subtypes.

(a) All rounds

(b) Last 10 rounds

Figure 6: Market correct rates by subtypes
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Figure 6 shows average market correct rates by subtype, with panel (a) covering all 20

rounds and (b) covering the last 10 rounds; corresponding statistical test results are shown

in Table 3. Across all 20 rounds, within LB and LNB, market correct rates are significantly

higher in the Partial subtype than in the Full subtype, with gaps of 13.54 percentage points

in LB and 23.96 percentage points in LNB. Within Compound, the market correct rate is

18.75 percentage points higher in CE+LB than in CE+LNB, and the difference is statistically

significant. This pattern is consistent with the comparison between non-compound LB and

LNB.

Turning to the last 10 rounds, Figure 6b shows that market correct rates no longer differ

significantly between Partial and Full within LB. In contrast, they remain significantly higher

in LNB-Partial than in LNB-Full, as well as in CE+LB than in CE+LNB.

Table 3: Comparisons across subtypes

(a) All 20 rounds

CE LB LNB Compound

Full Partial Full Partial Full Partial

Within Type 0.294 0.002 0.011 0.001

CE+LB 0.078 0.199 0.115 0.121

CE+LNB < 0.001 0.001 0.011 0.228

(b) Last 10 rounds

CE LB LNB Compound

Full Partial Full Partial Full Partial

Within Type 0.317 0.564 0.005 0.009

CE+LB 0.706 0.180 0.317 0.180

CE+LNB 0.006 0.002 0.082 0.302

Notes: Each cell reports the p-value from a two-sided Wilcoxon signed-rank test performed at the matching-group level (n = 16).

The last two rows of Table 3 report Wilcoxon signed-rank tests comparing the two

Compound subtypes with their non-compound counterparts, with panel (a) covering all 20

rounds and panel (b) covering the last 10 rounds. Across all 20 rounds, Table 3a shows

that, relative to CE, market correct rates in CE+LB do not differ significantly from either

CE subtype, whereas rates in CE+LNB are significantly lower than in both CE subtypes.
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Relative to LB, correct rates in CE+LB do not differ from either LB subtype, while rates

in CE+LNB are significantly higher than in LNB-Full but not significantly different from

LNB-Partial. Turning to the last 10 rounds, results in Table 3b are largely similar to those

from the full sample in Table 3a. The only difference is that the market correct rate in

CE+LNB is no longer significantly higher than that in LNB-Full. Overall, relative to each

non-compound counterparts, only the inclusion of LNB in Compound substantially reduces

market performance.

Result 2 (market-level correct rates by subtypes). Across all rounds, market correct rates in

LB and LNB are significantly lower in the Full subtype than in the Partial subtype, although

this difference in LB is no longer significant in the last 10 rounds. In both the full sample and

the last 10 rounds, market correct rates are significantly lower in CE+LNB than in CE+LB.

Compared to the non-compound counterparts, including LNB in Compound reduces market

correct rates.

4.2 Individual Mistakes

Given that markets often fail to reach fully correct matching, we examine whether and how

individuals make mistakes. We proceed in three steps. First, we analyze individual mistake

rates by firm role, classified as hard or easy depending on whether learning from others’ market

activities is required to achieve the correct match.18 We then focus on hard firms, examining

how their performance differs across learning patterns and subtypes. Finally, we study how

individuals make mistakes, focusing on the composition of mistake types and their evolution

over rounds.

4.2.1 Mistake rates by role

We define an individual as making a mistake if her final match differs from the predicted one.

In a four-player matching market, two players are workers who know the state, while the other

two are firms. Among firms, difficulty differs across CE, LB, LNB, and Compound. A firm is

18The overall individual mistake rate, pooled across roles, closely approximates one minus the market
level correct rate. As a result, the corresponding analysis largely mirrors the market-level results reported in
Section 4.1. We therefore relegate the pooled individual mistake results to ??. Moreover, we do not analyze
workers’ mistake behavior separately, since it is mechanically reflected in firm mistake rates.
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classified as a Hard Firm if it must update her belief about the state to achieve the correct

match, while the other is classified as an Easy Firm. In Plain, by contrast, both firms face the

same difficulty and neither needs to update beliefs to achieve the correct match. We therefore

pool the firms in Plain and use them as a benchmark for comparison with Hard Firms in other

treatments.

(a) All 20 rounds

(b) Last 10 rounds

Figure 7: Individual mistake rates by learning pattern and by role

Figure 7 displays individual mistake rates by learning pattern and role, with panel (a)

showing all 20 rounds and panel (b) showing the last 10 rounds. Across all learning patterns,

Hard Firms exhibit the highest mistake rates, compared to both Easy Firms and workers.

As shown in Figure 7a, mistake rates for easy firms fall below 4% across all learning patters
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in all rounds. In contrast, Hard Firms’ mistake rates are lowest in CE (9.38%), followed by

LB (16.15%), Compound (26.04%), and highest in LNB (36.46%). The benchmark Plain has

a mistake rate of 7.29% for all firms. Figure 7b shows that, in the lats 10 rounds, mistake

rates for Easy Firms fall below 3% in all learning patterns. Mistake rates for Hard Firms

also decline substantially in CE, and LB, falling below 5%, consistent with learning over time

in these environments. By contrast, mistake rates for Hard Firms remain high in LNB and

Compound, suggesting persistent learning difficulties in these settings.

Table 4: Mistake rates for Hard Firms: pairwise tests across learning patterns

CE LB LNB Compound

Plain 0.852 0.009 < 0.001 < 0.001

CE 0.020 < 0.001 0.002

LB 0.002 0.010

LNB 0.069

(a) All 20 rounds

CE LB LNB Compound

Plain 0.046 0.271 < 0.001 0.001

CE 0.655 < 0.001 0.005

LB < 0.001 0.001

LNB 0.023

(b) Last 10 rounds

Notes: Each cell reports the p-value from a two-sided Wilcoxon signed-rank test performed at the matching-group level

(n = 16).

Given that Hard Firms account for most individual mistakes, we focus on Hard Firms’

mistakes. Table 4 reports the results of paired Wilcoxon signed-rank tests. Across all 20

rounds, Table 4a shows that, compared to Plain, Hard Firms do not make significantly more

mistakes in CE (p = 0.852), but make significantly more mistakes in LB (p = 0.009), LNB

(p < 0.001), and Compound (p < 0.001). Compared to LB, Hard Firms make significantly

more mistakes in both LNB (p = 0.002) and Compound (p = 0.010), while the difference

between LNB and Compound is not statistically significant (p = 0.069).

Turning to the last 10 rounds, as Hard Firms gain experience, mistake rates remain low

in CE (4.17%) and LB (3.12%), neither of which differs significantly from Plain (p = 0.046 and

p = 0.271). In contrast, mistake rates remain high in LNB (38.54%) and Compound (21.88%),

with the rate in Compound significantly lower than that in LNB (p = 0.023). These results

indicate that hard firms are able to learn over time in CE and LB, whereas persistent learning

difficulties remain in LNB and Compound.
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Result 3 (Hard-Firm mistake rates by learning patterns). For each learning pattern, Hard

Firms account for most mistakes. Across all 20 rounds, the ranking of mistake rates for Hard

Firms is

Plain < CE < LB < Compound = LNB.

In the last 10 rounds, this ranking changes to

Plain = CE = LB < Compound < LNB.

4.2.2 Mistake rates for Hard Firms by subtype

The previous section shows that the mistake-rate patterns for Hard Firms closely mirror the

market-level results, which is expected given that Hard Firms account for most mistakes. We

now investigate whether mistake rates for Hard Firms also differ by subtype. Figure 8 plots

average mistake rates by subtype, with panel (a) showing all 20 rounds and panel (b) showing

the last 10 rounds. Corresponding statistical tests are reported in Table 5.
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(a) All rounds

(b) Last 10 rounds

Figure 8: Mistake rates for Hard Firms by subtype

Subtype differences for Hard Firms again closely parallel the market level subtype

differences discussed in Section 4.1.2. Across all 20 rounds, mistake rates for Hard Firms do not

differ between the Full and Partial subtypes within CE (p = 0.401), but are significantly higher

in the Full subtype than in the Partial subtype in LB and LNB (p = 0.003 and p = 0.024,

respectively). Within Compound, Hard Firms make significantly more mistakes in CE+LNB

than in CE+LB (p = 0.001). Results for the last 10 rounds are similar, with one exception.

There is no longer a significant difference between Full and Partial within LB (p = 0.564).
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Table 5: Mistake rates for Hard Firms: pairwise tests across subtypes

(a) All 20 rounds

CE LB LNB Compound

Full Partial Full Partial Full Partial

Within Type 0.401 0.003 0.024 0.001

CE+LB 0.081 0.110 0.220 0.107

CE+LNB 0.001 < 0.001 0.054 0.150

(b) Last 10 rounds

CE LB LNB Compound

Full Partial Full Partial Full Partial

Within Type 0.317 0.564 0.005 0.009

CE+LB 0.706 0.180 0.317 0.180

CE+LNB 0.006 0.002 0.061 0.342

Notes: Each cell reports the p-value from a two-sided Wilcoxon signed-rank test performed at the matching-group level (n = 16).

Comparing the two Compound subtypes to their non-compound counterparts over all 20

rounds, we find the following. First, the mistake rate for Hard Firms in CE+LB does not differ

significantly from either subtype of CE or from either subtype of LB. Second, Hard Firms in

CE+LNB make significantly more mistakes than in CE-Full and CE-Partial (both p < 0.001),

marginally fewer mistakes than in LNB-Full (p = 0.054), and do not differ significantly from

LNB-Partial. The last 10 rounds exhibit the same pattern.

Result 4 (Hard-Firm mistake rates by subtypes). Mistake rates for Hard Firms in LB and

LNB are significantly higher in the Full subtype than in the Partial subtype, although the

difference in LB is no longer significant in the last 10 rounds. In both the full sample and

the last 10 rounds, mistake rates for Hard Firms are significantly higher in CE+LNB than in

CE+LB. Compared to the non-compound counterparts, including LNB in Compound increases

the mistake rates.
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4.2.3 Mistake Types

In this section, we study how individuals make mistakes. Whenever a player fails to reach a

predicted match in a round, the mistake falls into one of three mutually exclusive categories: (i)

Overmatch, where the player should remain unmatched but chooses to match; (ii) Undermatch,

where the player should match but remains unmatched; and (iii) Wrong Partner, where the

player matches with an incorrect partner. Together, these categories exhaust all deviations

from the predicted outcome.

Figure 9: Composition of individual mistake types by learning pattern

Individual mistakes vary sharply across learning patterns. Figure 9 displays the compo-

sition of mistake types by learning pattern. In Plain, all mistakes are Overmatch; in CE and

LB, all are Undermatch. Wrong-Partner mistakes appear only in LNB (1.32%). In both LNB

and Compound, most mistakes are Undermatch (90.79% and 96.15%), with the remainder

being Overmatch.

The chi-square tests in Table 6 confirm that the distribution of mistake types differs

across treatments. Relative to Plain, all other treatments exhibit statistically different mistake-

type distributions (p < 0.001). CE and LB exhibit identical distributions (p = 1.000). CE and

LNB do not differ from each other (p = 0.167). By contrast, LNB differs significantly from LB

(p = 0.035) but not from Compound (p = 0.204).

32



Table 6: Mistake Type Distribution: Chi-square Tests

CE LB LNB Compound

Plain < 0.001 < 0.001 < 0.001 < 0.001

CE 1.000 0.167 0.233

LB 0.035 0.102

LNB 0.204
Notes: Each cell reports the p-value from a two-sided chi-squared test

performed at the matching-group level (n = 16).

The timing of mistakes also varies systematically across learning patterns. Figure 10

plots cumulative mistake rates by round. In Plain, nearly all mistakes occur in Round 1

(96.43%), with very few thereafter. In CE and LB, mistakes are concentrated in the first

10 rounds (77.78% and 91.18%, respectively). In contrast, LNB and Compound exhibit

mistakes throughout the experiment: in LNB, exactly 50% occur in the first 10 rounds, and in

Compound, 57.69% occur in the first 10 rounds. These patterns indicate rapid learning over

time in Plain, CE, and LB, but not in LNB and Compound.

Figure 10: Cumulative mistake rates by round

Result 5 (individual mistake types). Individual mistake types and their timing differ sharply

across treatments. In Plain, all mistakes are Overmatch, occurring mostly in Round 1. In CE

and LB, all mistakes are Undermatch and are concentrated in the first 10 rounds. In LNB and
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Compound, over 90% mistakes are Undermatch, and mistakes are spread more evenly across

rounds.

4.3 Matching Dynamics

In this section, we investigate the matching dynamics, that is, decentralized market activities.

Studying these dynamics allows us to assess more precisely the difficulty imposed by different

learning patterns.

Across learning environments, each matching market can generate up to two correct

matches. Each match can be classified as either an easy match, where the firm does not need

to infer the state to match correctly, or a hard match, where the firm must update its belief

about the state in order to match correctly. In Plain, all correct matches are easy. In LNB and

CE+LNB, each market contains exactly one match, and it is hard. In CE, LB, and CE+LB,

both easy and hard matches may occur.

We focus exclusively on correct matches and examine two aspects of matching dynamics.

First, we study the time required to finalize a correct match. Second, we examine the order in

which correct matches occur within a market.

4.3.1 Time required to form correct matches

We begin by analyzing the time required to achieve easy and hard matches. Figure 11 plots

the average matching time for each treatment, conditional on reaching a correct match. A

clear pattern emerges. Easy matches occur quickly and at similar speeds across treatments.

In contrast, hard matches take much longer, with average matching time rising from CE

(17.88 seconds) to LB (22.71 seconds), Compound (31.77 seconds), and peaking in LNB (37.37

seconds). In treatments with both easy and hard matches (CE, LB, and Compound), hard

matches also take significantly longer than easy matches (two-sided Wilcoxon signed-rank

tests, p < 0.001). These results indicate that greater learning difficulty slows decentralized

matching.
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Figure 11: Time required to form correct matches by learning pattern and by difficulty

Result 6 (matching dynamics). Hard matches take substantially longer than easy matches.

The time required to form hard matches is ranked as

LNB > Compound > LB > CE.

4.3.2 Order of correct matches

In CE, LB, and CE+LB, both easy and hard matches can occur. Moreover, in LB and

CE+LB, theory predicts that easy matches should precede hard matches, as hard matches

rely on information revealed by easy matches. We now examine whether this holds in the

experiment.
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Figure 12: Order of correct matches by learning pattern (easy-hard rate)

Figure 12 reports the average easy–hard rate (equal to 1 if the easy match forms strictly

before the hard match) by learning pattern and subtypes. The easy–hard rate is relatively

low in CE (36.46% in Full and 34.38% in Partial), but substantially higher in LB (72.92%

in Full and 78.12% in Partial) and in CE+LB (72.92%). The differences between CE and

LB, and between CE and CE+LB, are statistically significant (both p < 0.001, two-sided

Mann–Whitney tests). These results indicate that in LB and CE+LB, hard matches are

considerably more difficult to form, making the hard match more likely to occur after the easy

match.

Result 7 (order of correct matches). In LB and CE+LB, easy correct matches precede hard

correct matches significantly more often than in CE.

4.4 Explanations of key findings

In this section, we discuss possible explanations for our two key findings with respect to the

two treatment variables: learning patterns and subtypes.

First, Results 1 and 3 show that LNB is more difficult than the other learning patterns,

and that this difficulty does not diminish with experience. One possible explanation is that

making a correct matching decision in LNB requires the firm to go through three steps: (i)

identifying which worker-firm pair can potentially match in some states, (ii) waiting sufficiently
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long to verify the absence of the match, and (iii) correctly updating beliefs about the state

based on observed non-matching outcomes. Failure at any of these steps may lead to an

incorrect match. As a result, correct matching in LNB is substantially more challenging than

in CE and LB, where firms only need to perform a single state-inference step based on market

activities (step (iii)). Results 5 and 6 support this explanation in two complementary ways:

first, failures at any step are likely to generate Undermatch outcomes (Result 5); while the

waiting requirement in step (ii) leads to a longer time to match in LNB (Result 6).

Second, Results 2 and 4 indicate that the Partial subtype is easier than the Full subtype

in both LB and LNB. Recall that the benchmark payoff (the worst case payoff from staying

unmatched) is zero. One potential explanation stems from loss aversion, which may be

particularly pronounced in our design, where small positive payoffs coexist with relatively

large negative ones. When a firm makes an effort to draw inferences, they may focus more

on avoiding negative payoffs rather than on confirming positive ones, even though these

considerations are theoretically equivalent. For example, it may be more difficult to rule out

the two negative outcomes (−4 and −8), as in the potential payoff vector (2,−4,−8) under

Full, than to rule out a single negative outcome (−8), as in (2, 4,−8) under Partial. A related

but distinct explanation focuses on the state complexity rather than on payoff magnitudes.

Given a uniform prior over the three states, (1/3, 1/3, 1/3), a match is more likely to be

correct (i.e., to generate positive payoffs) in the Partial subtype (2, 4,−8) than in the Full

subtype (2,−4,−8). By effectively reducing the number of adverse states that must be ruled

out, the Partial subtype simplifies the inference problem faced by firms, thereby increasing the

likelihood of correct matching.

5 Discussions

5.1 Alternative stability notions

In matching theory with one-sided incomplete information, there have been a few stability

notions since Liu et al. (2014), including those of Chen and Hu (2020), Liu (2020), Pomatto

(2022), Wang (2023), and Chen and Hu (2024). They are all closely connected. Our theoretical

prediction belongs to this class via Chen and Hu (2020, 2024).
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Liu et al. (2014) formalized the first cooperative stability notion in a prior-free model.

More precisely, when a firm faces uncertainty over the type profile of workers and evaluates a

potential employee, she is willing to form a new match with that potential employee only if

the match yields a higher ex post payoff than the firm’s status quo match under all possible

(reasonable) type profiles. Liu et al. (2014) start with the set of all individual rational matchings

and iteratively exclude matchings that are clearly blocked in the above sense. They define

the limit of this procedure—iterative elimination of clearly blocked matchings—as the set of

incomplete information stable matchings. This approach resembles the idea of rationalizability

(Osborne and Rubinstein, 1994, Chapter 4) and circumvent the analysis of firm-specific beliefs.

Pomatto (2022) adopts an epistemic approach and proposes a stability notion that is equivalent

to Liu et al.’s notion.

Chen and Hu (2020) extends Liu et al. (2014) to incorporate flexible firm knowledge,

represented by information partitions. Unlike Liu et al. (2014) which concerns a stable set

of matchings, they focus on whether an individual matching is stable with the companion

information structure being stable as well. Nevertheless, their stability notion is also equivalent

to that of Liu et al. (2014) if we restrict attention to the set of stable matchings. This

equivalence is established in the prior-free setting.

Introducing a prior belief into Chen and Hu (2020) in a straightforward way yields the

model of Chen and Hu (2024). Their Bayesian stability notion turns out to be equivalent to

that of Liu (2020). Particularly, Liu (2020) defines stability of matching functions, each of

which specifies a matching (observable) for each type profile of workers (unobservable), which

shares the spirit of rational expectation equilibrium (Radner, 1979). In contrast, Chen and Hu

(2024) focus on the Bayesian stability of individual matchings (together with the companion

information structure). They show that Liu’s stable matching function can be translated

into a series of their stable matchings; conversely, any stable matching in their sense can be

induced from some stable matching function of Liu (2020). Wang (2023) establishes a similar

equivalence in a more general model.

Our theoretical prediction in Section 2.2 is clearly akin to Chen and Hu (2020, 2024).

The only major difference is that we assumed away transfers. Since our focus is on the stability

criterion and the learning patterns, instead of matching efficiency, a nontransferable utility
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setting is more suitable for experiment design (avoiding the screening role played by transfers).

5.2 Alternative approaches to decentralized matching

Other than the decentralized matching market in our experimental design, there are at least two

alternative approaches to decentralized matching: the “path-to-stability” approach following

Knuth (1976) and Roth and Vande Vate (1990), and the non-cooperative models of Haeringer

and Wooders (2011), Pais (2008), Suh and Wen (2008), Ferdowsian, Niederle and Yariv (2025),

Lauermann and Nöldeke (2014) and Ferdowsian (2023). Our experimental design balances the

advantages of these approaches.

To be precise, consider a complete-information matching market where blocking pairs

are sequentially satisfied, without specifying the details of who proposes to whom and so on.

Knuth (1976) demonstrates that this dynamic matching process may generate indefinite cycles,

whereas Roth and Vande Vate (1990) shows that there is always at least one blocking path

that leads to a stable matching. An immediate corollary is that the process which randomly

satisfies blocking pairs (each with positive probability if there are many) will converge to a

stable matching with probability one.

When there is incomplete information, Chen and Hu (2020, 2024) argue that information

will be updated along a matching process. They replicate the convergence result of Roth

and Vande Vate (1990) by showing that there is always a “learning-and-blocking” path that

leads to an incomplete-information stable matching. This line of research maintains the

cooperative feature of blocking pairs and circumvents the strategic behavior of agents. A

specific assumption is that agents are myopic—they opt to form a new matching as long as a

blocking opportunity exists.

In contrast, agents’ strategies are explicitly modeled in Haeringer and Wooders (2011);

Pais (2008); Suh and Wen (2008); Ferdowsian, Niederle and Yariv (2025) (non-cooperative

decentralized matching), Lauermann and Nöldeke (2014) (search with random meetings) and

Ferdowsian (2023) (multi-armed bandit problem). However, as Liu (2023, 2024) has argued,

cooperative models should have been more attractive as analytical tools for complex economic

applications involving incomplete information. One advantage is that it makes little ad hoc

(and thus diverse) assumptions about agents’ behavior.
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The decentralized matching markets in our experimental design make as little assumption

as possible while uniquely identifying all learning patterns. First, we construct the matching

environment so that each agent has only one potential partner. Choices therefore reduce to

whether to form a match or remain unmatched, rather than targeting which partner. This

feature rules out the complicated strategic behavior studied in the aforementioned papers.

Second, each matching market in our experiment has a unique incomplete-information stable

matching and there is a unique “learning-and-blocking” path from the autarky (no matches

and no information) to this stable matching. As a result, our design is robust to the specific

details of how matches are formed and how blocking pairs are selected.

5.3 Other decentralized implementations of stability notions

Most experimental studies of stability in matching markets test stability notions derived under

the assumption of complete information; see these notions in Roth and Sotomayor (1992).

While some experiments introduce incomplete information, it typically enters as an information

friction layered onto theories that assume complete information.

A first strand of the literature studies decentralized matching with transferable utility.

Under complete information, Otto and Bolle (2011), Dolgopolov et al. (2024), and He et al.

(2024) examine how agents share matching surplus in decentralized environments. Otto

and Bolle (2011) study repeated price bargaining in a two-by-two market and find frequent

inefficiency and instability. Dolgopolov et al. (2024) analyze convergence to the core under

different trading institutions, namely double auction, posted prices, and decentralized commu-

nication, in a three-by-three assignment market, finding strong support for core allocations but

weaker evidence for core prices. He et al. (2024) investigate how assortativity and “whether

equal split is in the core” affect stability and efficiency, showing that both—especially the

latter—significantly influence market performance.

Two papers study transferable-utility markets under incomplete information. Nalbantian

and Schotter (1995) examine decentralized matching where pairs negotiate salaries via phone

without knowing their match-specific surpluses. Agranov et al. (2025) compare complete- and

incomplete-information environments and show that incomplete information reduces both

efficiency and stability. In their incomplete-information treatments, agents know their own
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surplus profile but not which partners generate which surpluses, and they learn match values

only after an offer is accepted. Relative to our study, these papers focus primarily on stability

concepts and surplus allocation under complete information, rather than on testing stability

concepts derived for incomplete-information environments.

A second strand examines decentralized matching without transfers, closer to our setting.

Pais, Pintér and Veszteg (2020) study both complete- and incomplete-information environments,

where under incomplete information agents know only their own preferences, and find no

significant effect of incomplete information on stability or efficiency. Echenique, Robinson-

Cortés and Yariv (2025) focus on complete-information markets and study equilibrium selection

among multiple stable matchings. Although these papers consider nontransferable-utility

markets, they continue to test stability notions based on complete-information theory, with

incomplete information introduced only as an experimental friction. In contrast, our experiment

studies nontransferable-utility matching markets in which incomplete information arises from

uncertainty about states that determine agents’ preferences, and we explicitly test stability

concepts developed for matching under incomplete information.

5.4 Future directions

In existing decentralized implementations of stable matchings, experiments have mostly adopted

either free negotiation or communication (common in matching markets with transfers), or free

proposals, acceptances, and rejections with temporary matches that evolve until the market

unravels. While stability notions are well defined in theory, these decentralized processes

are largely outside the formal theoretical frameworks. A key limitation of such decentralized

approaches is the limited control over agents’ interim strategies prior to the formation of final

matches. A natural direction for future research is therefore to study structured dynamic

games, such as those proposed by Pais (2008), Suh and Wen (2008), and Haeringer and

Wooders (2011), and possibly incorporate some form of incomplete information as in Pomatto

(2022) or Ferdowsian, Niederle and Yariv (2025), in order to examine whether agents follow

the predicted strategies and achieve equilibrium outcomes in these formal settings.
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Appendix A Parameters

j1 j2

i1

7 5 6 -3
4 3 -9 1
2 8 -2 -8

i2

-1 -5 -8 1
6 -9 5 -4
-3 4 2 -7

(a) Plain (one pair)

j1 j2

i1

3 6 5 -4
5 4 -1 3
9 8 -3 -9

i2

-7 1 3 9
2 -6 6 5
-4 -5 8 2

(b) Plain (two pairs)

j1 j2

i1

-6 -3 7 5
-9 1 -4 -3
2 -8 -2 -8

i2

5 7 -1 5
8 4 2 -9
6 1 -3 -4

(c) CE-Full

j1 j2

i1

-7 -4 8 6
-1 2 5 4
-3 -9 -3 -9

i2

3 2 -7 1
6 5 2 -6
9 8 -4 5

(d) CE-Partial

j1 j2

i1

2 5 -6 -3
-4 3 -9 1
-7 8 2 -8

i2

-1 5 5 1
2 -9 8 -4
-3 -4 6 -7

(e) LB-Full

j1 j2

i1

8 6 -7 -4
5 4 -1 2
-3 9 3 -9

i2

-7 1 3 5
2 -6 6 2
-4 5 9 -8

(f) LB-Partial

j1 j2

i1

-2 5 -6 -3
4 3 -9 1
7 8 2 -8

i2

-1 5 5 1
2 -9 8 -4
-3 -4 6 -7

(g) LNB-Full

j1 j2

i1

-3 6 -7 -4
-5 4 -1 2
8 9 3 -9

i2

-7 1 3 5
2 -6 6 2
-4 5 9 -8

(h) LNB-Partial

j1 j2

i1

2 5 -6 -3
4 3 -9 1
-7 8 2 -8

i2

-1 5 6 1
2 -9 -5 -4
-3 -4 8 -7

(i) CE+LB

j1 j2

i1

-3 6 -7 -4
-5 4 -1 2
8 9 3 -9

i2

-7 1 3 2
2 -6 -6 -5
-4 5 9 -8

(j) CE+LNB

Figure A.1: Parameter 1.
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j1 j2

i1

3 8 4 -3
7 1 -7 5
4 2 -6 -9

i2

-2 1 5 -2
6 -5 9 -1
-8 4 7 -6

(a) Plain (one pair)

j1 j2

i1

5 -4 6 -5
-9 3 9 -7
-6 1 -8 2

i2

-8 3 7 -4
-4 -7 2 -3
-1 6 9 -8

(b) Plain (no pair)

j1 j2

i1

-4 -3 3 4
-7 -5 -7 -1
-6 9 -2 -8

i2

-5 -2 -2 1
9 -1 -6 -5
7 -6 -8 4

(c) CE-Full

j1 j2

i1

-6 -5 5 3
-9 7 9 1
-8 2 -6 -4

i2

-7 4 -8 -3
-2 3 -4 7
9 -8 -1 6

(d) CE-Partial

j1 j2

i1

3 8 -4 3
-7 1 -7 5
-4 2 -6 -9

i2

-2 1 5 2
6 -5 9 -1
-8 -4 7 -6

(e) LB-Full

j1 j2

i1

5 1 -6 5
9 3 -9 -7
-6 4 -8 2

i2

-8 -3 2 4
4 -7 7 3
-6 1 9 -8

(f) LB-Partial

j1 j2

i1

-3 2 -4 -3
7 1 -7 5
4 8 -6 -9

i2

-2 1 5 6
6 -5 2 -1
-8 -4 7 -9

(g) LNB-Full

j1 j2

i1

-5 4 -6 5
-6 1 -9 -7
9 3 -8 -2

i2

-8 -3 2 4
1 -7 7 3
4 -6 9 -8

(h) LNB-Partial

j1 j2

i1

3 8 -4 3
4 1 -7 5
-7 2 -6 -9

i2

2 -1 7 2
6 -5 -9 -1
-8 -4 5 -6

(i) CE+LB

j1 j2

i1

-5 4 -6 5
-6 3 -9 -7
9 1 -8 2

i2

-8 -3 9 4
4 -7 -2 -3
-1 6 7 -8

(j) CE+LNB

Figure A.2: Parameter 2.
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Appendix B Experimental instructions and screenshots

In this appendix, we provide the experimental instructions and the experimental screenshots

that are translated from the original Chinese version.

B.1 Instructions (All treatments)

[Welcome] Welcome to this experiment! Please read the following introduction carefully.

This experiment will last approximately 70 minutes. During the experiment, please

remain silent and do not communicate with others in any way. If you have any questions,

please raise your hand, and an experimenter will assist you individually.

Before the experiment begins, you will be randomly assigned to a large group consisting

of 12 participants. This group will remain fixed throughout the entire experiment. Each

participant will sit alone at a computer terminal, and all decisions will be made on the

computer screen. The experiment is anonymous: neither the experimenters nor the other

participants will know which participant is seated at which station, nor will they be able to

link any decision to you or to anyone else in the room.

Because you arrived on time, you have received a participation fee of 20 yuan. You

will earn additional income during the experiment, depending on your own decisions and the

decisions of other participants. At the end of the experiment, your total earnings will be paid

to you privately.

Throughout the experiment, all earnings will be denominated in “yuan” (RMB).

[Roles and Grouping] Within each large group of 12 participants, you will be randomly assigned

to one of two roles: 6 participants will be “Fruits” and 6 participants will be “Colors.” These

roles remain fixed throughout the entire experiment—once assigned, you will always be either

a Fruit or a Color. The experiment consists of 20 rounds, each corresponding to a different

“matching game.” In each round, the 12 participants in the large group will be randomly

divided into three independent subgroups of 4 participants each. Each subgroup of 4 will

complete one matching game together. The composition of the 4-person subgroups is fully

random and independent across rounds; that is, the participants in your subgroup may vary

from round to round. At the beginning of every round, you receive an initial payoff of 10 yuan.
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[Matching Game and Matching Payoffs] Each matching game involves four participants: Lemon,

Mango, Yellow, and Green. If your role is “Fruit,” you will be randomly assigned to be either

Lemon or Mango each round. If your role is “Color,” you will be randomly assigned to be either

Yellow or Green each round. In each round, Fruits and Colors may form “matches,” and each

Fruit can match with at most one Color, while each Color can match with at most one Fruit.

For example, Lemon may match with Yellow, or with Green, or Lemon may remain unmatched.

Two Fruits cannot match with each other, and two Colors cannot match with each other.

“Weather” affects the payoffs from matching. Each round’s weather may be Sunny, Cloudy, or

Rainy, with equal probability (33.33% each). The weather is determined independently each

round by the computer. At the beginning of each round, the two Fruits will learn the weather,

while the two Colors will not. The payoffs for each possible Fruit–Color match are shown in a

“Matching Payoff Table.” In the example below, you can find the payoff for any Fruit–Color

pair at the corresponding cell of the table. Each cell contains three rows: the first row lists the

payoffs under Sunny weather, the second row under Cloudy, and the third row under Rainy.

Each row contains two numbers: the first number is the Fruit’s payoff, and the second number

is the Color’s payoff. For example:

• If Lemon matches with Yellow and the weather is Sunny, Lemon earns 3 yuan and Yellow

earns 1 yuan.

• If Lemon matches with Green and the weather is Cloudy, Lemon earns –7 yuan and Green

earns –6 yuan.

• If Mango matches with Yellow and the weather is Rainy, Mango earns –3 yuan and Yellow

earns –4 yuan.

Figure B.1: Matching Payoff Table (Example)

If a participant does not match, the matching payoff is 0 yuan. For instance, in a
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4-person subgroup, if Lemon matches with Yellow, while Mango and Green remain unmatched,

and the weather is Sunny, then Lemon earns 3 yuan, Yellow earns 1 yuan, and Mango and

Green each earn 0 yuan.

[Matching Process and Final Payoffs] In the matching game, the four participants may freely

engage in three types of actions: sending invitations, accepting/rejecting invitations, and

breaking a temporary match. Details are as follows.

[Sending Invitations] Each participant may send a matching invitation to any participant of

the opposite role (i.e., Fruits may invite any Color, and Colors may invite any Fruit). The

invited participant immediately receives a notification showing the inviter’s identity; the other

participants do not observe this information. Before receiving a response (acceptance or

rejection), the inviter cannot send another invitation, but may receive invitations from others

and choose whether to accept or reject them.

[Accepting or Rejecting Invitations] Upon receiving an invitation, the invited participant has

15 seconds to respond:

• If the invited participant rejects the invitation, or does not respond within 15 seconds (which

counts as a rejection), the invitation expires.

• If the invited participant accepts within 15 seconds, the two participants form a temporary

match.

• During these 15 seconds, the invited participant may still send invitations to others.

[Temporary Matches, Final Matches, and Final Payoffs] If an invitation is sent and accepted,

a temporary match is formed. If the round has not ended, all matches are temporary. This

means:

• Participants in a temporary match may still send new invitations and may accept or reject

incoming invitations.

If a participant forms a new temporary match, any previous temporary match is automatically

dissolved.

• Either participant in a temporary match may unilaterally break the match at any time; the

other party simply receives a notification.

The “Matching Payoff Table” is displayed to everyone, and the currently active temporary

matches within the 4-person subgroup are shown by a highlighted indicator at the corresponding
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cell—this information is public. At the end of the round, all temporary matches become final

matches:

• Participants in a final match receive: Final payoff = initial 10 yuan + matching payoff

• Participants without a match receive: Final payoff = initial 10 yuan

[When Does a Round End?] At the beginning of each round, a 60-second public countdown

starts (visible in the upper-left corner of the screen):

• If the public matching indicators remain unchanged for 60 consecutive seconds—meaning no

temporary match is formed and no existing temporary match is broken—then the round ends.

• Whenever any change occurs (a match is formed or broken), the 60-second countdown

restarts. Additionally, once a round has lasted at least 60 seconds, a button labeled “Agree to

Proceed to Next Round” becomes available. If all four participants in the subgroup press this

button, the round ends immediately without waiting for the countdown to expire. Note: Even

after pressing the “Agree” button, you may continue all matching actions until the round ends,

and you may also cancel your agreement.

[Number of Rounds and Total Earnings] You will play 20 matching games in total. All

procedures are identical across rounds; the only difference is the Matching Payoff Table, which

updates each round. Before the 20 official rounds, there will be one practice round. The

practice round is designed to help you become familiar with the procedure, and the earnings

from this practice round do not count toward your final payment. After each round ends, the

system automatically proceeds to the next round. In the new round, you will not be able to

view any payoff tables or outcomes from previous rounds. At the end of the experiment, the

computer will randomly select 4 out of the 20 rounds, and your earnings from those 4 rounds

will count toward your experiment payment. Your total payment = participation fee (20 yuan)

+ the sum of the final payoffs from the 4 randomly selected rounds.
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B.2 Screenshots

Figure B.2: A translated screenshot of the experiment
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Appendix C Supplemental figures and tables

In this appendix, we provide supplemental figures and tables, which are useful for understanding

the experimental results.

(a) All 20 rounds (b) Last 10 rounds

Figure C.1: Individual mistake rate by learning patterns

Table C.1: Individual mistake rates: pairwise tests across learning patterns

CE LB LNB Compound

Plain 0.044 0.657 < 0.001 0.001

CE 0.010 < 0.001 0.001

LB 0.002 0.021

LNB 0.017

(a) All 20 rounds

CE LB LNB Compound

Plain 0.083 0.317 < 0.001 0.002

CE 0.655 < 0.001 0.005

LB < 0.001 0.001

LNB 0.022

(b) Last 10 rounds

Notes: Each cell reports the p-value from a two-sided Wilcoxon signed-rank test performed at the matching-group level

(n = 16).
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(a) All rounds

(b) Last 10 rounds

Figure C.2: Individual mistake rate by subtypes
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Table C.2: Individual mistake rates: pairwise tests across subtypes

CE LB LNB Compound

Full Partial Full Partial Full Partial

Within Type 0.401 0.006 0.012 0.001

CE+LB 0.081 0.110 0.095 0.127

CE+LNB < 0.001 < 0.001 0.019 0.090

(a) All 20 rounds

CE LB LNB Compound

Full Partial Full Partial Full Partial

Within Type 0.317 0.564 0.006 0.009

CE+LB 0.706 0.180 0.317 0.180

CE+LNB 0.006 0.002 0.045 0.302

(b) Last 10 rounds
Notes: Each cell reports the p-value from a two-sided Wilcoxon signed-rank test performed at the matching-group level (n = 16).

Figure C.3: Density of Final Correct Match Time
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Figure C.4: Hard-firm mistake type composition by learning pattern

Figure C.5: Hard-firm cumulative mistake rate by round and by learning pattern
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