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Abstract

This paper studies how learning shapes outcomes in decentralized matching markets
with incomplete information. In a one-to-one worker—firm matching environment where
workers privately observe a payoff-relevant state, firms learn from matching behavior.
Building on recent Bayesian and prior-free theories of stable matching, we experimentally
examine whether stability can emerge through decentralized processes and how learning
drives convergence. We identify three fundamental learning patterns, learning from
conditional evaluation, learning from blocking, and learning from no blocking, each with
fully and partially revealing subtypes, as well as compound learning patterns. Our results
show that most markets converge to stable outcomes, demonstrating the predictive power
of the theory; however, learning from no blocking and full revelation of the state hinder

convergence, and our analysis provides evidence on the mechanisms driving these effects.
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1 Introduction

In two-sided markets such as marriage and labor markets, incomplete information is ubiquitous:
individuals often have only imprecise knowledge about potential partners, and firms may not
know the productivity of their prospective employees. Agents form matches based on what
they know, and also learn from observing others’ matching behavior. A matching market
stabilizes when the interaction between learning and matching settles—that is, when agents’
existing knowledge induces no further changes in matches, and the existing matching reveals
no new information. Recent matching theory predicts plausible market outcomes through
this lens; see Liu et al. (2014) and the literature it pioneers. In this paper, we experimentally

examine whether stable matchings emerge in decentralized markets and how learning shapes

matching outcomes.

Specifically, we analyze a one-to-one matching environment between workers and firms,
where workers are informed of a payoff-relevant state that determines their effort costs and
productivities (and thus both sides’ payoffs), but which may be unknown to firms. Our matching
model with one-sided incomplete information resembles both the prior-free framework of Liu
et al. (2014) and the Bayesian framework of Liu (2020). As shown in these and subsequent
works, incomplete information fundamentally changes the analysis of matching markets relative
to the complete-information benchmark of Gale and Shapley (1962), particularly with respect
to what agents can infer from various possible observations and how such inferences shape

predictions of stable matchings.'

We evaluate market performance relative to a theoretical benchmark, referred to as
a stable outcome, which is consistent with various solution concepts in the recent literature.
Informally, a market outcome consisting of a matching and agents’ knowledge about the true
state is stable if (i) it is individually rational, (ii) it is not blocked by any worker-firm pair, and
(i) the fact of individual rationality and no blocking pair provides no additional information to
agents. To the best of our knowledge, this is the first experimental test of such stability-based

solution concepts in decentralized matching markets with incomplete information.?

1See Roth and Sotomayor (1990), and more recently Chiappori, Salanie and Che (2024), for comprehensive
surveys of the matching theory with complete information, where agents are fully informed of everyone’s
characteristics and preferences.

2There have been some theoretical progress on this direction; see detailed discussions in Section 5.2. There



When testing these stability concepts, we pay particular attention to the role of learning
from outcomes, the key new element relative to stability notions under complete information.
In decentralized matching markets, three fundamental learning patterns may arise, each
associated with a distinct type of matching outcome. First, a firm’s (she) hiring decision may
depend on the worker’s (he) willingness to match. If a bona fide match is formed, the firm
refines her knowledge by confirming the worker’s willingness. We refer to this as learning
from conditional evaluation (CE). Second, firms may learn from matches formed between
other worker—firm pairs, as such matching behavior can reveal information about the state.
We call this learning from blocking (LB). Third, firms may learn from the absence of certain
worker-firm matches, since non-matching behavior can also be informative about the state. We
refer to this pattern as learning from no blocking (LNB). These fundamental learning patterns
are summarized in Table 1. We also study compound learning (Compound) that combine

multiple fundamental patterns.

Table 1: Fundamental learning patterns and their subtypes

Fully revealing Partially revealing

Learning from conditional evaluation CE-Full CE-Partial

Learning from blocking LB-Full LB-Partial

Learning from no blocking LNB-Full LNB-Partial
CE+LB -

Compound learning CE+LNB -

Moreover, beyond the learning types, it is important to assess whether full revelation of
the state is essential for stable matching. To this end, we introduce two subtypes within each
fundamental learning pattern, depending on whether learning fully reveals the true state (Full)
or only partially reveals it (Partial). In the fully-revealing case, firms can, in principle, uniquely
pin down the state and match according to ex post payoffs. In contrast, partial-revealing may
still suffice for firms’ matching decisions; for instance, a firm may prefer to match as long as
the potential employee is acceptable, regardless of his exact productivity. Finally, we also

consider two compound learning subtypes: CE+LB and CE+LNB.?

is related experimental work in Pais, Pintér and Veszteg (2020), but our study differs in the role of incomplete
information in bridging theory and experiment; see detailed discussion in Section 5.3.

3We do not include a compound LB+LNB as it requires a larger market than our two-by-two market.



Our experiment includes eight treatments listed in Table 1, plus a benchmark treatment,
Plain, without learning. The primary treatment variable is the learning pattern, while
the secondary variable is the subtype. We use a within-subject design with 20 parameter
sets covering all market types. Each participant experiences all markets over 20 rounds in
randomized order to mitigate order effects. Matching is decentralized: participants may freely
propose, accept or reject offers, and leave any matches. Matches are finalized once the market
ends, which occurs after a period of inactivity, a similar approach first adopted by Agranov
et al. (2025). Markets feature incomplete information with three possible states, and payoffs

depend on the realized state. Tentative matches are public, while individual actions are private.

Our results show that, in the absence of learning (Plain), markets achieve nearly complete
stable matchings as participants gain experience. Introducing learning patterns has little
effect under CE and LB, but substantially impedes stability under LNB and Compound.
Most failures to reach stable matchings occur in environments involving LNB (i.e., in LNB or
CE+LNB), indicating that learning from the absence of certain matches poses a particularly
severe challenge. A plausible explanation is that LNB requires participants to infer the state
from the absence of certain matches, which is cognitively more demanding than the inference

required in CE or LB; the data support this interpretation.

Furthermore, learning subtypes also matter. Within both LB and LNB, stable matchings
arise more often in the Partial subtype than in the Full subtype. This pattern suggests that
participants rely on simple heuristics, such as focusing on avoiding large losses or counting
favorable states. Because the Partial subtype involves more favorable states under the prior,
and because negative payoffs may loom larger due to loss aversion, these heuristics can generate
systematically better outcomes in Partial than in Full. Together, these findings highlight
that both the structure of learning patterns and the degree of state revelation are critical

determinants of whether decentralized matching markets converge to stable outcomes.

Related literature.  Our paper complements two streams of literature: (i) matching theory
with incomplete information and (ii) the decentralized implementation of stable matchings.
We briefly review these literatures here to position our contribution and leave more detailed

discussions to Section 5.



Since Gale and Shapley (1962) and Shapley and Shubik (1971), a standard assumption in
matching theory has been complete information—that is, agents’ characteristics and preferences
are commonly known. Liu et al. (2014) made a significant breakthrough by introducing
one-sided (worker-side) incomplete information in a prior-free framework that imposes no
prior beliefs on the firm side. Their framework has since stimulated a rich line of research,
including implementation via adaptive matching processes (Chen and Hu, 2020), epistemic
foundations (Pomatto, 2022), two-sided incomplete information (Chen and Hu, 2023; Park,
2025), rural-hospital structures (Peralta, 2025), and efficiency of stable matchings (Chen and
Ho, 2025), among others.

In contrast, Liu (2020) introduces a Bayesian framework in which the stability of
matchings shall be accompanied by the Bayesian consistency of prior, on-path and off-path
beliefs. This approach has likewise been extended to study efficiency of stable matchings and
adaptive matching processes (Chen and Hu, 2024), epistemic foundations (Wang, 2023), lattice
and rural-hospital structures (Hu, 2025), and general cooperative analysis with (two-sided)
incomplete information (Liu, 2023). See also Bikhchandani (2017) and Alston (2020) for an
alternative Bayesian approach. These aforementioned papers together build a sound theoretical

foundation for matching with incomplete information; see Liu (2024) for a survey.*

We contribute to this theoretical literature by experimentally testing stability concepts
and identifying learning patterns in decentralized matching markets. Although we present a
Bayesian theoretical model, our experiment design fits both the prior-free framework following

Liu et al. (2014) and the Bayesian framework following Liu (2020).°

The decentralized matching markets in our experimental design relate both to the
cooperative “path-to-stability” literature, beginning with Roth and Vande Vate (1990), and to
non-cooperative matching theories, such as Pais (2008), Haeringer and Wooders (2011), and

Ferdowsian, Niederle and Yariv (2025). The novelty of our design lies in circumventing the

4Topics loosely related to this literature include stable mechanisms with uncertain preferences of others
(Roth, 1989; Ehlers and Masso, 2007, 2015; Yenmez, 2013), centralized deferred acceptance mechanism
with incomplete information Fernandez, Rudov and Yariv (2022), search and matching (Ferdowsian, 2023),
information acquisition in matching (Immorlica et al., 2020), etc.

SParticularly, our theoretical prediction is consistent with various stability concepts in the recent literature.
See Section 5.1 for detailed discussions. One departure is that, unlike Liu et al. (2014) and Liu (2020), we
assume away transfers, and thus their role as a screening tool, to focus on learning from match formations.



differences between these two approaches, allowing us to focus directly on learning without

relying on ad hoc assumptions about decentralized environments.%

There are a few experimental papers testing whether markets achieve stable matchings
using a decentralized approach. However, all of these studies test stability concepts derived
under the assumption of complete information (Nalbantian and Schotter, 1995; Otto and Bolle,
2011; Pais, Pintér and Veszteg, 2020; Dolgopolov et al., 2024; He et al., 2024; Agranov et al.,
2025; Echenique, Robinson-Cortés and Yariv, 2025). These papers vary in two dimensions: (i)
whether the information structure is complete information or incomplete information, and (ii)

whether the model features transferable or nontransferable utilities.

Most experimental studies focus on matching markets with transferable utility and
examine stability, efficiency, and surplus allocation (Nalbantian and Schotter, 1995; Otto and
Bolle, 2011; Dolgopolov et al., 2024; He et al., 2024; Agranov et al., 2025). Among them, only
Nalbantian and Schotter (1995) and Agranov et al. (2025) introduce incomplete information.
In both cases, however, incomplete information is implemented as an experimental friction,

while market outcomes are evaluated using theories that assume complete information.

Only Pais, Pintér and Veszteg (2020) and Echenique, Robinson-Cortés and Yariv (2025)
study decentralized matching without transfers. Of these, only Pais, Pintér and Veszteg (2020)
consider incomplete information, where participants know only their own preferences but not
the entire preference profile. Nevertheless, both papers continue to assess outcomes using

complete-information stability concepts.

In summary, our paper contributes to the literature in three ways. First, we provide the
first experimental test of stability concepts in matching markets with incomplete information,
as pioneered by Liu et al. (2014). Second, we show that decentralized interactions can lead to
stable matchings in most market environments. Third, we identify two key factors that make
stability difficult to achieve: (i) when stability requires learning from the absence of blocking,
and (ii) when a greater number of states leads to a loss, rather than a gain, compared to the

default of non-matching.

6See Section 5.2 for detailed discussions of different approaches to decentralized matching.



2 Matching with Incomplete Information

2.1 The Model

Consider a one-to-one matching market with one-sided incomplete information and without
monetary transfer. Specifically, let I = {1,...,n} be aset of workers, and J = {n+1,...,n+m}
be a set of firms. A matching is a one-to-one function p: I U J — I U J that pairs up workers

and firms such that for each ¢ € I and each j € J,

(1) uli) € TU{i},
(2) u(j) € TU{s}, and

(3) w(i) =7 if and only if u(y) =i.

If (i) =i or u(y) = j, we say that the agent is unmatched. Assume that p is observable.

A payoff-relevant state w is drawn from a finite set {2 according to a prior distribution
B e A(2). Let a;;(w) € R and b;j(w) € R be the ex post matching values worker ¢ and firm
J receive, respectively, when they are matched, i.e., p(i) = j, and when the realized state is
w. Normalize the unmatched values to zero, that is, a;;(w) = bj;(w) = 0. Assume that each
worker can observe the realized state, whereas firms may not. Instead, the firms’ information

structure is described by a partition profile

= (Hn+1, s aner)a

where for each firm j € J, II; is a partition over ; w’ € II;(w) means that if the true state
is w, firm j cannot distinguish w from «’. Each agent can also have publicly observable
payoff-relevant attributes that are summarized by their indices ¢ € I and j € J. Finally, the

functional forms of ¢ : I X J x 2 - Rand b: I x J x Q — R are commonly known.

A market outcome, or simply an outcome, (u,w,II) specifies a matching pu, a realized
state w which may not be publicly observable, and an information structure II. As in standard
knowledge models, II is commonly known; we will revisit the interpretations of II in Section

2.3, after introducing some key concepts. Here, we illustrate a market outcome first.

Example 1 (An illustration of market outcomes).

Consider a matching market with I = {i1,i2} and J = {j1,7j2}. There are three equally



are given in the table below:

probable states, i.e., Q = {w,w’,w"} and f(w) = B(&)

= B(w”) = 1/3. The matching values

J1 J2
1 2 |-10 -10
i1] 1 4 |-10 -10
-1 -8 |-10 -10
-10 -10 |1 2
i2|-10 -10 |1 4
-10 -10 |1 -8
where the numbers in each box correspond to
aij(w)  bij(w)
ai (@) big) |
aij(wW")  bij(w")

Consider two market outcomes with the realized state being w:

(A) (p,w, 1), where p(iy) = i1, p(iz) = iz, I = {{w,w',w"}}, and ;, = {{w, v, w"}}.

(B) (4w, ﬂ)? where fi(i1) = ji1, fi(i2) = iz, ﬂjl = {{w, w/} ) {w”}}7 and ﬂjz = {{w, w/} ) {w”}}'

In the first outcome, all agents are unmatched and both firms are uninformed; agents’ payoffs
are all zero. In the second, there is a matched pair (i1, j1) and firms are partially informed;
worker i1’s payoff is 1, firm ji’s expected payoff is 3 conditioning on the event I1;, (w) = {w,w'},

whereas worker i5’s and firm jo’s payoffs are both zero.

Remark 1 (Observability of the realized state). We could write w = (t1,...,t,) and interpret
each t; as worker i’s private type, which contains information about his productivity and/or
effort cost. Then there are two kinds of observability to be discussed: (1) whether a worker
can observe other workers’ types, and (2) within a matched pair, whether a firm can observe
her own employee’s type. First, in models with one-sided incomplete information, when there
is no externality, i.e., a;j(w) = a;5(t;) and b;j(w) = b;j(¢;) (Liu, 2020; Chen and Hu, 2024),

"For convenience in discussion, we specify matching values directly in the examples, rather than specifying
the states and functional forms of a and b. We will present matching values in this format in all examples,

unless otherwise specified.



whether a worker can only observe his own type ¢; or can observe the entire worker type profile
w = (t1,...,t,) makes no difference in predicting the market outcome. For simplicity, we
assume that each worker can observe the entire state. Second, some papers, e.g., Liu et al.
(2014), assume observability within matched pairs, i.e., each matched firm j can observe the
true type of her employee p(j), while others may not, e.g., Liu (2020). We follow the latter

here, yet we notice that imposing the observability assumption is straightforward (Hu, 2025).

2.2 Stability of Market Outcomes

Following Chen and Hu (2020, 2023, 2024), and indirectly Liu et al. (2014) and Liu (2020),
stability of a market outcome has three requirements: (1) individual rationality, (2) no blocking

pair (equivalently, no pairwise deviation) and (3) information stability.

Definition 1. An outcome (u,w,II) is individually rational (IR) if agents’ expected payoffs

are nonnegative, i.e.,
Gy (W) = 0 foralliel and

E [bu); | Ti(w)] = 0 foralljeJ.

In Example 1, both outcome (A) and outcome (B) are IR.

To define a blocking pair (i, j) for the outcome (u,w,II), where u(i) # j, we first clarify
firm j’s belief when evaluating her potential employee i. Let D, ;; be the set of states under
which worker ¢ benefits from the rematching with firm j, i.e.,

D, ij = {&) € N:ai(w) > aw(i)(@)} . (1)
Intuitively, for the potential deviation by (i,7) to be viable, worker ¢ and firm j must both
expect to benefit from rematching with each other. When firm j calculates her expected payoff,
a state @ is relevant for firm j only when @ € D,, ;;; any state that violates the inequality in
(1) is irrelevant due to the worker’s objection. Based on firm j’s initial knowledge II;(w) and
the hypothetical knowledge D, ;;, firm j’s belief shall be B("Hj(w) N D, ), which is referred
to as the “off-path” belief in Liu (2020).%

8 See Liu (2020, Section IV-E) for alternative ideas of specifying off-path beliefs.



Definition 2. An outcome (u,w, 1) is blocked by (i,7) if worker i and firm j prefer each

other to their assigned partners under p, i.e.,
aij(w) > apu(w) and

E [bij’Hj(W) M DNJ']'] > E [b“(j)j’l_[j(w) M DMJ'J'] .
In Example 1, outcome (A) with all agents unmatched is blocked by (i1, 1) since

aj i (w)=1 > 0=ua(w) and

1 1
E [bi1j1 ‘Hjl (w> N D,u,iljl] = §bi1j1 (w) + §bi1j1 (w/) =3 > 0=E [bjljl ‘Hjl (w) N Du,iljl] )

where ITj, (w) = {w,w’,w"} and D, ;,j, = {w,w'}.

Finally, for an outcome to be “stable”, we introduce the concept of information stability.
It captures the intuition that the absence of individual or pairwise deviation does not convey
additional information to firms (beyond what is already described in the market outcome—II).
This requirement is crucial because the absence of deviation may indeed provide additional

information to firms, which could in turn lead to a deviation based on firms’ updated beliefs.

Example 2 (Information updating from the absence of deviation).

Consider the matching market in Example 1, but with the following matching-value table:
J J2

-1 2 |-10 -10

i1 1 4 |-10 -10

1 8 |-10 -10
-10 -10 |1 2
121-10 -10 | 1 -4
-10 -10 | 1 -8

Consider three market outcomes which differ only in the realized state:
(X) (p,w, 1), where p(i1) = i1, p(iz) = ia, I, = {{w,w’,w"}}, and 11, = {{w,w’,w"}}.
(Y) (u,w',ﬂ), where /”’(21) = /il) M(lQ) = i27 Hjl = {{w7w,)w”}}7 and H]Q = {{w,w’,w”}}.

(Z) (p,w"”,I1), where pu(i1) = i1, p(iz) = i2, I, = {{w,w’,w"}}, and 1T, = {{w,w’,w"}}.

All three outcomes are individually rational. According to Definition 2, outcome (X) is not

blocked by (i1, j1) because of worker i1’s objection; it is not blocked by (ig, j2) because firm

10



Jo2 worries about the terrible matching values —4 and —8 when D, ;,;, = {w,w’,w"}. Thus,
outcome (X) admits no blocking pair. In contrast, it is straightforward to verify that both

outcomes (Y) and (Z) are blocked by (i1,71) (but not by (i2, j2)).

Now suppose the true state is w. We have argued that there should not be any deviation
from outcome (X). However, firm js may make the following inference: If the true state were w’
or w”, then a pairwise deviation by (i1, j1) from state (X) should have occurred. The absence
of such deviation, therefore, reveals information to firm jo—that the true state cannot be w’
or w”. Based on her updated belief that the true state must be w, firm js can then form a

blocking pair with worker is.

To formalize information stability, we define a set of no-deviation states as follows:
Nyn:={® € Q: (u,®,1II) is IR and not blocked} .

Given an outcome (u,w,IT) that is IR and not blocked, intuitively, upon noticing the absence
of individual /pairwise deviation, each firm should refine her partition according to the newly
acquired information that the true state must lie in N, . For notational convenience, we
denote by N, 11 the binary partition induced by N, i; that is, N, := {N,m, Q\ N,m}
Define an operator H,(-) (History) to represent the information refinement (i.e., the join

between I and N, 1) as follows:
H,(II) = (M1 VN - g VNI,
where [II; VN, n|(@) = ILj(©) NN, (@) for all @ € @ and all j € J.
In Example 2, N, i1 = {w}, Ny = {{w}, {w,w"}}, and [H,(I1)];, = {{w}, {w,"}} #I1,,.
If H,(IT) = II, then the fact of individual rationality and no blocking pair provides no further

information to firms (in addition to their knowledge IT).
Definition 3. An outcome (pu,w,Il) is stable if it satisfies three requirements:
(1) (p,w,I) is individually rational.

(2) (p,w,II) is not blocked.

(3) information stability holds, that is, H,,(II) = I1.°

9The requirement here is slightly stronger but simpler than those in Chen and Hu (2020, 2023, 2024), in

11



Say u is a stable matching at w if (pu,w,1Il) is a stable outcome for some II.

In Example 1, suppose the true state is w. Then an outcome (C) (ji,w,II), where
A(in) = j1, fi(iz) = j2 and I, =10, = {{w,w'}, {"}},
is stable. Although there are four stable outcomes, they only differ in the information structure
(the other three are strict refinements of II). In other words, /i is a unique stable matching.
Similarly, in Example 2, suppose the true state is w. Then an outcome (W) (fi,w,II) is
stable, where fi(i1) = i1, fi(iz) = j2, and II;, = {{w},{w’,w"}}, and II;, = {{w},{',w"}}.
Although there are four stable outcomes, they only differ in the information structure (the

other three are strict refinements of II). In other words, /i is a unique stable matching.

2.3 Learning in Dynamic Matching Processes

So far we have introduced a static setting and asked whether or not an exogenously given
putative outcome (u,w, IT) is stable. However, like in Chen and Hu (2020, 2024), we can also
interpret both p and II as the result of a “learning-and-blocking” process in the matching
market, where they are endogenously determined by market dynamics.'” In what follows, we
introduce three kinds of learning in matching with incomplete information. Our analysis shall

be clear without formally introducing the matching process of Chen and Hu (2020, 2024).

In Example 1, outcome (A) is the autarky where no one is matched and both firms
are uninformed. We have argued that outcome (A) is blocked by (i1,71). Now if i1 and
71 indeed form a new match, how would firms update their information? Firm j;’s initial
knowledge is IT;, = {{w,w’,w”}}. When she evaluates worker i, she only considers states in
D, iy = {w,w'}, which is a piece of hypothetical information regardless of worker i;’s real
preference. Nevertheless, when the new match (i1, 1) actually takes place, this hypothetical
information is confirmed. Thus, firm ji’s knowledge shall be updated to IT;, = {{w,w'}, {w”}}.

We refer to this kind of learning as learning from conditional evaluation (CE).

Since matching is publicly observable, firm jo observes the new match (i1, j1). She can

the sense that their operator H,(-) applies only to the common knowledge event containing w. We adopt this
formulation without losing any learning feature of the matching market, which is the main focus of our paper.

ONaturally, when we discuss market dynamics where bona fide deviations take place along a path, agents’
evaluation of each other shall be based on a state w (or a partition cell containing it) that is realized and fixed.

12



infer that the true state must be either w or w’. Therefore, firm js shall update her information
to I1;, = {{w,w'}, {w"}}. We refer to this second kind of learning as learning from blocking
(LB), which generally includes learning from other agents’ individual /pairwise deviation. In
fact, the new match, together with CE and LB, transitions the market outcome from (A)
to (B). With the updated information f[jQ, firm jo forms a blocking pair with worker s for

outcome (B), which leads to the stable market outcome (C) where two pairs are matched up.

Finally, we have argued in Example 2 that firm js, when observing no deviation
(potentially by worker 4; and firm j;), shall update her information from II;, = {{w,w’,w”}}
to I1;, = {{w}, {w’,w"}}, which leads to a blocking pair with worker iy for outcome (X). If
they indeed form a new match, the market outcome becomes (W). We refer to this learning

pattern as learning from no blocking (LNB).

Remark 2 (Individual “blocking”). Although we motivate the learning patterns using pairwise
deviations or the absence of them, the idea applies to individual deviations as well. More
precisely, suppose the status quo market outcome already includes a matched pair (i, 7). If
they break up, then agents shall learn from this “individual blocking” (LB). Alternatively, if
they do not break up, then agents shall learn from the absence of “individual blocking” or,

equivalently, from IR (LNB).

These three learning patterns are arguably fundamental in a matching market. Moreover,
they are exhaustive if we maintain the cooperative perspective.'’ In particular, when we
focus merely on the evolution of publicly observable matches, it is only possible for a firm to
learn from (1) her own matching experience (CE), (2) other agents’ new match or separation
(LB), and (3) absence of other agents’ new match or separation (LNB). Of course, compound
learning patterns based on those fundamental ones are possible.

It has been shown in Chen and Hu (2020, 2024) that if agents keep seeking for better
matches, and those new matches are formed randomly when there are many, a “learning-and-
blocking” process converges to a stable outcome with probability one. Their results provide a

dynamic foundation for incomplete-information stability concepts following Liu et al. (2014)

HThat is, we focus on the change of matches while ignore the details such as “who proposes to whom”
or “how long it takes”. As Liu (2023) points out, cooperative modeling, as a reduced form, proves useful in
analyzing complex markets. It makes no excessive ad hoc assumptions while keeps the flexibility of doing so.

13



and Liu (2020), which also applies to our setting straightforwardly (with only notational
adaption).

In the current paper, we will design matching markets with the following features:

1. There is a unique stable matching.

2. Suppose agents maximize their matching values. There is a unique “learning-and-blocking”

path from the autarky (no match and no information) to the unique stable matching.

3. Each learning pattern of CE, LB and LNB, as well as some compound learning patterns,

can be uniquely identified by the change of matching in a dynamic market.

Remark 3 (Naive versus sophisticated agents). Chen and Hu (2020, 2024) assume naive /myopic
agents when they prove the convergence of their adaptive market processes, i.e., agents opt to
execute a blocking opportunity whenever it exists. In decentralized matching markets, e.g.,
those in Lauermann and Noldeke (2014) and Ferdowsian, Niederle and Yariv (2025), agents
may be sophisticated and strategic interactions make the analysis complex. However, in our
setting, this difference is circumvented. Particularly, we design matching markets to make
sure that each agent has only one potential partner. Thus, the choice is merely whether to get

matched, rather than to which partner.'?

2.4 Identification of Learning Patterns

We consider eight matching markets in this section. Similar to Examples 1-2, each market
has two workers, two firms and three equally probable states. The basic notations remain
the same, so are omitted. Suppose the true state is w and all markets start with the autarky
outcome (p,w, IT)—that is, p(i1) = i1, p(iz) = i2, and II;, =1I;, = {{w,w’,w”}}. Across the
eight markets, we vary matching values to ensure that in each market a unique evolution path
leading to stability can identify a specific learning pattern, as long as agents maximize their
matching values. Two of them identify the CE pattern, two LB, two LNB, and finally two

compound learning patterns.

We start with two “CE” markets; the matching value tables are displayed in Figure 1.

In market CE-Full (fully revealing), the autarky outcome is blocked by worker io and firm jo.

12The fragility issue pointed out by Rudov (2024) is also circumvented.
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When they form a new match (ig, j2), firm jy learns from the worker’s willingness that the
true state must be w (recall that workers can observe the true state). This leads to the unique
stable matching fi, where fi(i;) = i1 and fi(i2) = j2. Market CE-Partial (partially revealing)
slightly differs from CE-Full. There, when a new match (ig, j2) takes place, firm jo learns from
the worker’s willingness that the true state must be either w or ', but never w”. In these two
markets, the learning pattern of CE is uniquely identified by the status of matches, i.e., the
match (ig, j2) is observed if and only if learning from conditional evaluation occurs, whereas

the details such as “who proposes to whom” does not matter.'?

J1 J2 J1 J2
-10 -10 |-10 -10 -10 -10 |-10 -10
711-10 -10 [-10 -10 711-10 -10 [-10 -10
-10 -10 |-10 -10 -10 -10 |-10 -10
-10 -10 |1 2 -10 -10 |1 2
ip|-10 -10 [-1 4 ia-10 -10 |1 4
-10 -10 |-1 -8 -10 -10 |-1 -8
(a) CE-Full (b) CE-Partial

Figure 1: Two markets with learning from conditional evaluation.

Figure 2 shows two “LB” markets. In market LB-Full, the autarky outcome is blocked
by worker i; and firm j1, but not by io and jo since jy worries about the negative payoffs
—4 and —8. Forming the new match (i1, 71) does not require firm j; to conduct conditional
evaluation; she is always willing to deviate from the autarky. However, when the match (i1, j1)
takes place, both firms get fully informed that the true state must be w. The market outcome
transitions to (fi,w, IT), where ji(iy) = ji, ji(ia) = iz and II;, = I;, = {{w}, {',w"}}. Now
firm jy can rule out the negative payoffs and form a blocking pair with worker i2, leading to
the unique stable matching fi, where fi(i1) = j1 and fi(iz) = jo. Market LB-Partial is similar,
only that jo learns partially about the true state w from the match (i, j1). Again, the learning
pattern of LB (through firm j2) is uniquely identified by the status of matches: the match

(i2, j2) is observed if and only if learning from blocking (by worker ¢; and firm j;) occurs.

Figure 3 shows two “LNB” markets. The market LNB-Full is identical to Example 2, in

BIndeed, firm j» may attempt to probe worker ip’s willingness, which is frequently recorded in our
experiments.

15



J1 J2 J1 J2
1 2 |-10 -10 1 2 |-10 -10
(-1 4 |-10 -10 i1 1 4 |-10 -10
-1 8 |-10 -10 -1 8 |-10 -10
-10 -10 |1 2 -10 -10 |1 2
i2-10 -10 |1 -4 i2|-10 -10 |1 4
-10 -10 |1 -8 -10 -10 |1 -8
(a) LB-Full (b) LB-Partial

Figure 2: Two markets with learning from blocking.

which the match (ig, j2) is observed if and only if learning from no blocking (potentially by
worker 47 and firm j;) occurs. LNB-Partial differs only in that js learns partially about the

true state w from the absence of match (i1, j1).

J1 J2 J1 J2
-1 2 -10 -10 -1 2 -10 -10
11| 1 4 -10 -10 11| -1 4 -10 -10
1 8 -10 -10 1 8 -10 -10
-10 -10 |1 2 -10 -10 |1 2
19]-10 -10 |1 -4 9]-10 -10 | 1 4
-10 -10 |1 -8 -10 -10 |1 -8

(a) LNB-Full (b) LNB-Partial

Figure 3: Two markets with learning from no blocking.

Finally, we consider two compound learning patterns CE+LB and CE+LNB in Figure 4.
In market CE+LB, the autarky outcome is blocked by worker ¢; and firm j;, which does not
require firm j;’s conditional evaluation or learning from the outcome. In contrast, worker is
and firm jo do not form a blocking pair for the autarky, since firm jo worries about the negative
payoff —8, even if she takes into account the hypothetical information D, ;,;, = {w,w”}. When
the match (i1, 1) takes place, firm jy learns from this blocking that the true state must be
either w or w’. Therefore, the market outcome transitions from the autarky to (i, w, ﬂ), where
fi(i1) = j1, fu(iz) = ig and 10, = II;, = {{w,w'}, {w"}}. Now firm js forms a blocking pair
with worker 4y, where D, ;,;, = {w,w"} is confirmed informative. Here, the match (i2,j2)
is observed if and only if learning from blocking (by worker i; and firm j;) and conditional

evaluation simultaneously occur. Similarly, in market CE+LNB, the match (ig, j2) is observed
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if and only if learning from no blocking (potentially by worker i; and firm j;) and conditional

evaluation simultaneously occur.

J1 J2 J1 J2
1 2 -10 -10 -1 2 -10 -10
21| 1 4 -10 -10 21| -1 4 -10 -10
-1 8 -10 -10 1 8 -10 -10
-10 -10 |1 2 -10 -10 |1 2
i9-10 -10 |-1 -4 i9-10 -10 |-1 -4
-10 -10 |1 -8 -10 -10 |1 -8
(a) CESLB (b) CE+LNB

Figure 4: Two markets with compound learning patterns.

How about the compound learning pattern of LB+LNB? For experimental tractability,
we do not include this case. Indeed, it is impossible to have LB+LNB in a two-worker-two-firm
market, for the following reason: First of all, learning from blocking involves a pair to be
matched, i.e., the “blocking” part, such as (i1,71). Identifying the effect of learning involves
another pair to be matched, such as (iz, j2), where firm j, learns. Similarly, learning from no
blocking involves at least one “off-path pair in mind” to be matched such as (i3, j3), which,
however, does not actually occur. Identifying the effect of LNB involves another pair to be
matched, say (i, j2) or some other pair. Therefore, to have LB+LNB identified, the market

shall have at least three firms, which may make other identifications messy.

Remark 4 (Risk attitude). We assumed that firms are risk neutral. However, the matching
markets we have designed can identify the learning patterns even if firms are risk averse
(whichever extent) or slightly risk seeking. For example, in the market LNB-Partial (Figure
3b), firm jo is initially uninformed, which implies E [b;,;, | II;, (w)] = 1/3(2 4+ 4 — 8) = —2/3.
Even if firm jo is slightly risk seeking and puts more weights on the values 2 and 4, she still
prefers not being matched with i without learning from no blocking (potentially by (i, j1)).
When firms are extremely risk averse in that they prefer to be matched only if they can clearly
guarantee a positive (or better) payoff, we shall adopt the prior-free stability concept of Liu
et al. (2014) and Chen and Hu (2020). Other than that, all our experiment design and analysis

carry over.
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3 Experiment Design

3.1 Treatment variables

According to the theory, we focus on two layers of treatment variables. First, our primary
interest lies in the four learning patterns: CE, LB, LNB, and Compound, while Plain serves as
a baseline without any learning technique. Second, within each of the four learning patterns we
introduce two subtypes. For CE, LB, and LNB, the subtypes differ in whether state information
can be fully revealed or partially revealed after learning: Full revelation is possible in CE-full,
LB-Full, and LNB-Full, but not in CE-Partial, LB-Partial, or LNB-Partial. For the Compound
learning pattern, the two subtypes differ in their composition: CE is combined with LB in the

first subtype CE+LB, and with LNB in the second subtype CE+LNB.

Across these two treatment dimensions, we employ 20 payoff parameter sets, shown in
Figures A.1 and A.2, each corresponding to a specific learning pattern and subtype. In both
figures, the first row displays the Plain parameters; the second row presents the CE parameters
(CE-Full on the left, CE-Partial on the right); the third row shows the LB parameters (LB-Full
on the left, LB-Partial on the right); the fourth row contains the LNB parameters (LNB-Full
on the left, LNB-Partial on the right); and the final row reports the Compound parameters
(CE+4LB on the left, CE+LNB on the right).

3.2 Treatment orders

We use a within-subject design for our treatment variables: each subject plays all 20 markets
(Figures A.1 and A.2) over 20 rounds, one per round. Subjects differ only in the order in which
these 20 markets are presented. The order is determined by a pre-randomization procedure

that is randomized but subject to three sets of constraints.

First, to control for order effects across learning patterns, we divide the 20 markets into
four blocks of five markets (Blocks A-D). Each block contains exactly one market from each
learning pattern: Plain, CE, LB, LNB, and Compound. The sequence in which these four
blocks are played is varied across matching groups using a Latin-square design, generating

four distinct treatment orders:
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Division of 20 markets/rounds
1 2 3 4
Treatment order 1 Block A Block B Block C Block D
Treatment order 2 Block B Block C  Block D Block A
Treatment order 3 Block C Block D Block A Block B
Treatment order 4 Block D Block A Block B Block C

Second, within each block, the five learning patterns follow a structured order. All
blocks begin with the Plain market. The remaining four learning patterns appear in different
orders across blocks, again determined by a Latin-square design. This ensures variation in the

relative positions of CE, LB, LNB, and Compound. The four within-block sequences are:

Five markets/rounds in each block

1 2 3 4 )
Block A Plain CE LB LNB Compound
Block B Plain LB LNB Compound CE
Block C Plain LNB Compound CE LB
Block D Plain Compound CE LB LNB

Third, to control for subtype order effects, the pre-randomization additionally ensures
that, within each learning pattern, the two subtypes appear an equal number of times in the
first 10 rounds and the last 10 rounds. This balances subjects’ exposure to subtypes between

the early and later stages of the experiment.'*

3.3 Design details

At the beginning of the experiment, subjects are randomly assigned to matching groups, each
of which has size 12 and is fixed throughout the experiment. Each matching group follows one

of the four treatment orders for the 20 rounds. Within each group, 6 subjects are randomly

141deally, the procedure should have been constrained only by the three requirements described above. Due
to a coding error, however, the sequence of the four Plain markets was inadvertently fixed across all treatment
orders, rather than being randomized. As a result, the Plain markets may be affected by order effects and
should be interpreted with caution. Because our primary interest lies in comparing the four learning patterns
and their subtypes, this issue does not materially affect our main research question.
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assigned to the role of worker and 6 to the role of firm; these roles remain fixed throughout
the experiment. Workers are labeled Lemon or Mango, and firms are labeled Yellow or Green.
In each round and in each market, a worker is randomly assigned to be Lemon or Mango
with equal probability, and a firm is randomly assigned to be Yellow or Green with equal
probability.

At the start of each round, 12 subjects in a matching group are randomly partitioned
into three matching markets, each consisting of two workers (one Lemon and one Mango) and
two firms (one Yellow and one Green). The pre-randomization of role assignment ensures that,
across the 20 rounds, each firm-role subject experiences a balanced mix of the easier role (j;
in the model) and the harder role (j2). In every round and in every market, a worker may

match with a firm or stay unmatched; vice versa for firms.

Each matching market features one of three equally likely states: Sunny, Cloudy, or Rainy.
Workers always observe the realized state, whereas firms do not. States are pre-randomized
prior to the experiment and independently drawn across matching markets. All players can
see the payoff matrix of the current matching market, which displays the worker and firm
payoffs for each possible match in each state.'® Each player receives an initial endowment of
10 points. Remaining unmatched yields this endowment only. A finalized matching generates

an additional payoff shown in the payoff matrix, which may be positive or negative.'¢

Within each market, workers and firms may send proposals to one opponent at a time.
A proposal must be accepted or rejected within 15 seconds; otherwise, it is automatically
rejected. An accepted proposal forms a match. Matches are temporary throughout the market:
players may dissolve existing matches and may proposal to or accept proposals from the other
opponent to form new ones. Whenever a new match forms, any prior matches involving either
player immediately dissolve. Each market runs for at least 60 seconds. A public information
area displays a countdown timer above the payoff matrix. When a match forms or dissolves,
the corresponding payoff cell lights up or dims, and the 60-second timer restarts. The market

ends when the timer reaches zero or when all four players in the market click the "Agree to

5The presentation of the payoff matrix is pre-randomized. For each learning pattern, four games are
assigned to each of the following payoff-change conditions: no change; row change (swapping i1 and i2); column
change (swapping j1 and j2); and change in both rows and columns (swapping both).

16 A player’s total payoff in a market is non-negative and equals 10 plus the corresponding matching payoff.
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Proceed to Next Round" button, which becomes available after the initial 60 seconds. All
current temporary matches are finalized at the time the market ends. Subjects do not receive

any feedback between rounds. An illustrative screenshot is provided in Figure B.2.

3.4 Procedures

The experiment was conducted at the Shanghai University of Finance and Economics in
September and October 2025. Subjects were recruited from the Economics Lab’s subject pool
through Ancademy, a platform for social science experiments; most participants accessed the
experiment using the Ancademy mobile app. We ran eight sessions, each with 24 subjects. In
each session, the 24 subjects were randomly divided into two independent matching groups of
12. Treatments were randomized at the matching group level, allowing multiple treatment

orders to be implemented within the same session.

In total, 192 subjects participated, forming 16 independent matching groups of 12, which
were evenly assigned across the four treatment orders. Each subject participated in only one
session. The participant pool consisted primarily of undergraduate students from a variety of

majors.

The experiment was computerized using oTree (Chen, Schonger and Wickens (2016)) and
conducted in Chinese (English translations of the instructions and screenshots are provided
in Appendix B). Upon arrival, subjects were randomly assigned a card indicating their table
number and seated in the corresponding cubicles. All instructions were presented on their
computer screens, and participants completed a set of control questions to ensure comprehension.

The same experimenter oversaw all experimental sessions.

At the end of the experiment, subjects completed a short demographic survey. Four of the
20 rounds were randomly selected for payment. The experimental currency was denominated
directly in Chinese yuan (CNY). Average earnings were 70.51 CNY including a 20 CNY

participation bonus (approximately 10.53 USD). Each session lasted about 50-60 minutes.
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4 Results

In this section, we evaluate experimental performance relative to the predicted stable matching
(i.e., the correct matching) along three dimensions. First, at the market level, we examine
whether the markets converge to the correct matching. Second, at the individual level, we
analyze whether and how participants make mistakes, with particular attention to heterogeneity
across firm roles and to different types of mistakes. Finally, we study market dynamics, focusing
on the time required to reach the correct matching and the sequence in which correct matches

are achieved.

4.1 Market Outcome
4.1.1 Market correct rates by learning pattern

We first examine whether markets reach a stable matching. We classify a 4-player market
as correct if all four players reach their predicted matches. Figure 5 reports the market
correct rate by learning pattern for all 20 rounds (panel (a)) and for the last 10 rounds (panel
(b)). Bars report means and error bars indicate £ one standard error, both computed at the

12-player matching-group level.'”

98.96%

100% 100% 95.83%
90.62%
87.50%
83.85%
73.96%
75% 75%
61.98%
50%
25%
0% 0%
CE LB LNB

Plain

96.88%

78.12%

61.46%

LNB

(a) All 20 rounds (b) Last 10 rounds

Market Correct Rate
Market Correct Rate
W
(=]

2

~
v
X

Compound

X

Compound Plain CE LB

Figure 5: Market correct rates by learning pattern

Y Throughout the Results section, bars show means and error bars indicate + one standard error, both
computed at the 12-player matching-group level; statistical tests are also conducted at this level.
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As shown in Figure 5a, across all 20 rounds, market correct rates differ substantially
across learning patterns, ranging from 61.98% in LNB to 90.62% in CE. For each of the five
learning patterns, we reject the hypothesis that markets always reach the stable matching.
Comparing Figures 5b and 5a, market correct rates are generally higher in the second half of
the experiment, with the exception of LNB. Specifically, during the last 10 rounds, correct
rates are close to 100% in Plain, CE, and LB, but remain below 80% in LNB and Compound.

Table 2: Market correct rates: pairwise tests across learning patterns

CE LB LNB Compound CE LB LNB Compound
Plain 0.071 0.293 < 0.001 < 0.001 Plain 0.083 0.317 < 0.001 0.002
CE 0.015 < 0.001 0.002 CE 0.655 < 0.001 0.006
LB 0.001 0.016 LB < 0.001 0.001
LNB 0.013 LNB 0.021
(a) All 20 rounds (b) Last 10 rounds

(Noteslz6])3ach cell reports the p-value from a two-sided Wilcoxon signed-rank test performed at the matching-group level
n = 16).

Next, we test whether achieving the stable matching is more difficult in CE, LB, LNB,
and Compound, compared to Plain. Table 2a reports pairwise Wilcoxon signed-rank tests
across learning patterns using data from all 20 rounds. The results show that market correct
rates in CE and LB do not differ significantly from Plain, whereas correct rates in LNB and
Compound are significantly lower than in Plain. Moreover, correct rates are significantly lower
in LB, LNB, and Compound than in CE, lower in LNB and Compound than in LB, and lowest
in LNB. Turning to the last 10 rounds, Table 2b reports results that largely mirror those from
the full sample, with one exception: the correct rate in LB is no longer significantly lower than

in CE, indicating learning over time in LB.

In sum, at the market level, achieving the stable matching is more difficult in LB, LNB,
and Compound than in Plain, but not in CE. Moreover, while performance in LB converges to
that in Plain as participants gain experience, no comparable improvement is observed in LNB

or Compound. Finally, LNB exhibits greater difficulty than Compound.

Result 1 (market-level correct rates by learning patterns). Across all rounds, no learning

pattern achieves full correct rates. The ranking of market correct rates is

Plain = CE > LB > Compound > LNB.
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In the last 10 rounds, however, markets under Plain, CE, and LB achieve nearly full correct

rates, and the ranking becomes

Plain = CE = LB > Compound > LNB.

4.1.2 Market correct rates by subtype

In this section, we examine whether market correct rates differ by the secondary treatment
variable, subtype, within each learning pattern. For CE, LB, and LNB, the subtypes differ in
whether players can uniquely and certainly pin down the true state after learning, which is
possible in the subtype Full but not in Partial. For Compound, the two subtypes differ in
their composition, either CE+LB, or CE+LNB. Plain has no subtypes.
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(b) Last 10 rounds

Figure 6: Market correct rates by subtypes
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Figure 6 shows average market correct rates by subtype, with panel (a) covering all 20
rounds and (b) covering the last 10 rounds; corresponding statistical test results are shown
in Table 3. Across all 20 rounds, within LB and LNB, market correct rates are significantly
higher in the Partial subtype than in the Full subtype, with gaps of 13.54 percentage points
in LB and 23.96 percentage points in LNB. Within Compound, the market correct rate is
18.75 percentage points higher in CE+LB than in CE+LNB, and the difference is statistically
significant. This pattern is consistent with the comparison between non-compound LB and

LNB.

Turning to the last 10 rounds, Figure 6b shows that market correct rates no longer differ
significantly between Partial and Full within LB. In contrast, they remain significantly higher
in LNB-Partial than in LNB-Full, as well as in CE+LB than in CE+LNB.

Table 3: Comparisons across subtypes

(a) All 20 rounds

CE LB LNB Compound
Full Partial Full Partial Full Partial

Within Type 0.294 0.002 0.011 0.001
CE+LB  0.078 0199 0.115 0.121
CE+LNB < 0.001 0.001 0.011  0.228

(b) Last 10 rounds

CE LB LNB Compound
Full Partial Full Partial Full Partial

Within Type 0.317 0.564 0.005 0.009
CE+LB 0.706 0.180 0.317 0.180
CE+LNB 0.006 0.002 0.082  0.302
Notes: Each cell reports the p-value from a two-sided Wilcoxon signed-rank test performed at the matching-group level (n = 16).

The last two rows of Table 3 report Wilcoxon signed-rank tests comparing the two
Compound subtypes with their non-compound counterparts, with panel (a) covering all 20
rounds and panel (b) covering the last 10 rounds. Across all 20 rounds, Table 3a shows
that, relative to CE, market correct rates in CE+LB do not differ significantly from either

CE subtype, whereas rates in CE+LNB are significantly lower than in both CE subtypes.
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Relative to LB, correct rates in CE+LB do not differ from either LB subtype, while rates
in CE+LNB are significantly higher than in LNB-Full but not significantly different from
LNB-Partial. Turning to the last 10 rounds, results in Table 3b are largely similar to those
from the full sample in Table 3a. The only difference is that the market correct rate in
CE+LNB is no longer significantly higher than that in LNB-Full. Overall, relative to each
non-compound counterparts, only the inclusion of LNB in Compound substantially reduces

market performance.

Result 2 (market-level correct rates by subtypes). Across all rounds, market correct rates in
LB and LNB are significantly lower in the Full subtype than in the Partial subtype, although
this difference in LB is no longer significant in the last 10 rounds. In both the full sample and
the last 10 rounds, market correct rates are significantly lower in CE+LNB than in CE+LB.
Compared to the non-compound counterparts, including LNB in Compound reduces market

correct rates.

4.2 Individual Mistakes

Given that markets often fail to reach fully correct matching, we examine whether and how
individuals make mistakes. We proceed in three steps. First, we analyze individual mistake
rates by firm role, classified as hard or easy depending on whether learning from others’ market
activities is required to achieve the correct match.'® We then focus on hard firms, examining
how their performance differs across learning patterns and subtypes. Finally, we study how
individuals make mistakes, focusing on the composition of mistake types and their evolution

over rounds.

4.2.1 Mistake rates by role

We define an individual as making a mistake if her final match differs from the predicted one.
In a four-player matching market, two players are workers who know the state, while the other

two are firms. Among firms, difficulty differs across CE, LB, LNB, and Compound. A firm is

8The overall individual mistake rate, pooled across roles, closely approximates one minus the market
level correct rate. As a result, the corresponding analysis largely mirrors the market-level results reported in
Section 4.1. We therefore relegate the pooled individual mistake results to ??7. Moreover, we do not analyze
workers’ mistake behavior separately, since it is mechanically reflected in firm mistake rates.
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classified as a Hard Firm if it must update her belief about the state to achieve the correct
match, while the other is classified as an Fasy Firm. In Plain, by contrast, both firms face the
same difficulty and neither needs to update beliefs to achieve the correct match. We therefore

pool the firms in Plain and use them as a benchmark for comparison with Hard Firms in other

treatments.
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Figure 7: Individual mistake rates by learning pattern and by role

Figure 7 displays individual mistake rates by learning pattern and role, with panel (a)
showing all 20 rounds and panel (b) showing the last 10 rounds. Across all learning patterns,
Hard Firms exhibit the highest mistake rates, compared to both Easy Firms and workers.

As shown in Figure 7a, mistake rates for easy firms fall below 4% across all learning patters
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in all rounds. In contrast, Hard Firms’ mistake rates are lowest in CE (9.38%), followed by
LB (16.15%), Compound (26.04%), and highest in LNB (36.46%). The benchmark Plain has
a mistake rate of 7.29% for all firms. Figure 7b shows that, in the lats 10 rounds, mistake
rates for Easy Firms fall below 3% in all learning patterns. Mistake rates for Hard Firms
also decline substantially in CE, and LB, falling below 5%, consistent with learning over time
in these environments. By contrast, mistake rates for Hard Firms remain high in LNB and

Compound, suggesting persistent learning difficulties in these settings.

Table 4: Mistake rates for Hard Firms: pairwise tests across learning patterns

CE LB LNB Compound CE LB LNB Compound
Plain 0.852 0.009 < 0.001 < 0.001 Plain 0.046 0.271 < 0.001 0.001
CE 0.020 < 0.001 0.002 CE 0.655 < 0.001 0.005
LB 0.002 0.010 LB < 0.001 0.001
LNB 0.069 LNB 0.023
(a) All 20 rounds (b) Last 10 rounds

Notes: Each cell reports the p-value from a two-sided Wilcoxon signed-rank test performed at the matching-group level

(n = 16).

Given that Hard Firms account for most individual mistakes, we focus on Hard Firms’
mistakes. Table 4 reports the results of paired Wilcoxon signed-rank tests. Across all 20
rounds, Table 4a shows that, compared to Plain, Hard Firms do not make significantly more
mistakes in CE (p = 0.852), but make significantly more mistakes in LB (p = 0.009), LNB
(p < 0.001), and Compound (p < 0.001). Compared to LB, Hard Firms make significantly
more mistakes in both LNB (p = 0.002) and Compound (p = 0.010), while the difference

between LNB and Compound is not statistically significant (p = 0.069).

Turning to the last 10 rounds, as Hard Firms gain experience, mistake rates remain low
in CE (4.17%) and LB (3.12%), neither of which differs significantly from Plain (p = 0.046 and
p = 0.271). In contrast, mistake rates remain high in LNB (38.54%) and Compound (21.88%),
with the rate in Compound significantly lower than that in LNB (p = 0.023). These results
indicate that hard firms are able to learn over time in CE and LB, whereas persistent learning

difficulties remain in LNB and Compound.
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Result 3 (Hard-Firm mistake rates by learning patterns). For each learning pattern, Hard
Firms account for most mistakes. Across all 20 rounds, the ranking of mistake rates for Hard
Firms is

Plain < CE < LB < Compound = LNB.

In the last 10 rounds, this ranking changes to

Plain = CE = LB < Compound < LNB.

4.2.2 Mistake rates for Hard Firms by subtype

The previous section shows that the mistake-rate patterns for Hard Firms closely mirror the
market-level results, which is expected given that Hard Firms account for most mistakes. We
now investigate whether mistake rates for Hard Firms also differ by subtype. Figure 8 plots
average mistake rates by subtype, with panel (a) showing all 20 rounds and panel (b) showing

the last 10 rounds. Corresponding statistical tests are reported in Table 5.
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Figure 8: Mistake rates for Hard Firms by subtype

Subtype differences for Hard Firms again closely parallel the market level subtype
differences discussed in Section 4.1.2. Across all 20 rounds, mistake rates for Hard Firms do not
differ between the Full and Partial subtypes within CE (p = 0.401), but are significantly higher
in the Full subtype than in the Partial subtype in LB and LNB (p = 0.003 and p = 0.024,
respectively). Within Compound, Hard Firms make significantly more mistakes in CE+LNB
than in CE4+LB (p = 0.001). Results for the last 10 rounds are similar, with one exception.

There is no longer a significant difference between Full and Partial within LB (p = 0.564).
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Table 5: Mistake rates for Hard Firms: pairwise tests across subtypes

(a) All 20 rounds

CE LB LNB Compound
Full Partial Full Partial Full Partial

Within Type 0.401 0.003 0.024 0.001

CE+LB 0.081 0.110 0.220 0.107
CE+LNB 0.001 < 0.001 0.054 0.150

(b) Last 10 rounds

CE LB LNB Compound
Full Partial Full Partial Full Partial

Within Type 0.317 0.564 0.005 0.009
CE+LB 0.706 0.180 0.317 0.180
CE+LNB 0.006 0.002 0.061  0.342
Notes: Each cell reports the p-value from a two-sided Wilcoxon signed-rank test performed at the matching-group level (n = 16).

Comparing the two Compound subtypes to their non-compound counterparts over all 20
rounds, we find the following. First, the mistake rate for Hard Firms in CE+LB does not differ
significantly from either subtype of CE or from either subtype of LB. Second, Hard Firms in
CE+LNB make significantly more mistakes than in CE-Full and CE-Partial (both p < 0.001),
marginally fewer mistakes than in LNB-Full (p = 0.054), and do not differ significantly from
LNB-Partial. The last 10 rounds exhibit the same pattern.

Result 4 (Hard-Firm mistake rates by subtypes). Mistake rates for Hard Firms in LB and
LNB are significantly higher in the Full subtype than in the Partial subtype, although the
difference in LB is no longer significant in the last 10 rounds. In both the full sample and
the last 10 rounds, mistake rates for Hard Firms are significantly higher in CE+LNB than in
CE+LB. Compared to the non-compound counterparts, including LNB in Compound increases

the mistake rates.
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4.2.3 Mistake Types

In this section, we study how individuals make mistakes. Whenever a player fails to reach a
predicted match in a round, the mistake falls into one of three mutually exclusive categories: (i)
Overmatch, where the player should remain unmatched but chooses to match; (ii) Undermatch,
where the player should match but remains unmatched; and (iii) Wrong Partner, where the
player matches with an incorrect partner. Together, these categories exhaust all deviations

from the predicted outcome.

100%
75%
B Over Match
50% ] Under Match
‘Wrong Partner
25%
0% E

Plain CE LB LNB Compound

Mistake Composition

Figure 9: Composition of individual mistake types by learning pattern

Individual mistakes vary sharply across learning patterns. Figure 9 displays the compo-
sition of mistake types by learning pattern. In Plain, all mistakes are Overmatch; in CE and
LB, all are Undermatch. Wrong-Partner mistakes appear only in LNB (1.32%). In both LNB
and Compound, most mistakes are Undermatch (90.79% and 96.15%), with the remainder

being Overmatch.

The chi-square tests in Table 6 confirm that the distribution of mistake types differs
across treatments. Relative to Plain, all other treatments exhibit statistically different mistake-
type distributions (p < 0.001). CE and LB exhibit identical distributions (p = 1.000). CE and
LNB do not differ from each other (p = 0.167). By contrast, LNB differs significantly from LB
(p = 0.035) but not from Compound (p = 0.204).
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Table 6: Mistake Type Distribution: Chi-square Tests

CE LB LNB Compound

Plain < 0.001 <0.001 <0.001 <0.001

CE 1.000 0.167 0.233
LB 0.035 0.102
LNB 0.204

Notes: Each cell reports the p-value from a two-sided chi-squared test

performed at the matching-group level (n = 16).

The timing of mistakes also varies systematically across learning patterns. Figure 10
plots cumulative mistake rates by round. In Plain, nearly all mistakes occur in Round 1
(96.43%), with very few thereafter. In CE and LB, mistakes are concentrated in the first
10 rounds (77.78% and 91.18%, respectively). In contrast, LNB and Compound exhibit
mistakes throughout the experiment: in LNB, exactly 50% occur in the first 10 rounds, and in
Compound, 57.69% occur in the first 10 rounds. These patterns indicate rapid learning over

time in Plain, CE, and LB, but not in LNB and Compound.

100% Plain
96.43%

75%

= Plain

- CE
LB
LNB
Compound

50%

25%

Cumulative Mistake Rate

0%

5 10 15 20
Expriment Round

Figure 10: Cumulative mistake rates by round

Result 5 (individual mistake types). Individual mistake types and their timing differ sharply
across treatments. In Plain, all mistakes are Overmatch, occurring mostly in Round 1. In CE

and LB, all mistakes are Undermatch and are concentrated in the first 10 rounds. In LNB and
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Compound, over 90% mistakes are Undermatch, and mistakes are spread more evenly across

rounds.

4.3 Matching Dynamics

In this section, we investigate the matching dynamics, that is, decentralized market activities.
Studying these dynamics allows us to assess more precisely the difficulty imposed by different

learning patterns.

Across learning environments, each matching market can generate up to two correct
matches. Each match can be classified as either an easy match, where the firm does not need
to infer the state to match correctly, or a hard match, where the firm must update its belief
about the state in order to match correctly. In Plain, all correct matches are easy. In LNB and
CE+LNB, each market contains exactly one match, and it is hard. In CE, LB, and CE+LB,

both easy and hard matches may occur.

We focus exclusively on correct matches and examine two aspects of matching dynamics.
First, we study the time required to finalize a correct match. Second, we examine the order in

which correct matches occur within a market.

4.3.1 Time required to form correct matches

We begin by analyzing the time required to achieve easy and hard matches. Figure 11 plots
the average matching time for each treatment, conditional on reaching a correct match. A
clear pattern emerges. Easy matches occur quickly and at similar speeds across treatments.
In contrast, hard matches take much longer, with average matching time rising from CE
(17.88 seconds) to LB (22.71 seconds), Compound (31.77 seconds), and peaking in LNB (37.37
seconds). In treatments with both easy and hard matches (CE, LB, and Compound), hard
matches also take significantly longer than easy matches (two-sided Wilcoxon signed-rank
tests, p < 0.001). These results indicate that greater learning difficulty slows decentralized

matching.
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Figure 11: Time required to form correct matches by learning pattern and by difficulty

Result 6 (matching dynamics). Hard matches take substantially longer than easy matches.

The time required to form hard matches is ranked as

LNB > Compound > LB > CEF.

4.3.2 Order of correct matches

In CE, LB, and CE+LB, both easy and hard matches can occur. Moreover, in LB and
CE+LB, theory predicts that easy matches should precede hard matches, as hard matches
rely on information revealed by easy matches. We now examine whether this holds in the

experiment.
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Figure 12: Order of correct matches by learning pattern (easy-hard rate)

Figure 12 reports the average easy—hard rate (equal to 1 if the easy match forms strictly
before the hard match) by learning pattern and subtypes. The easy—hard rate is relatively
low in CE (36.46% in Full and 34.38% in Partial), but substantially higher in LB (72.92%
in Full and 78.12% in Partial) and in CE+LB (72.92%). The differences between CE and
LB, and between CE and CE+LB, are statistically significant (both p < 0.001, two-sided
Mann—Whitney tests). These results indicate that in LB and CE+LB, hard matches are
considerably more difficult to form, making the hard match more likely to occur after the easy

match.

Result 7 (order of correct matches). In LB and CE+LB, easy correct matches precede hard

correct matches significantly more often than in CE.

4.4 Explanations of key findings

In this section, we discuss possible explanations for our two key findings with respect to the
two treatment variables: learning patterns and subtypes.

First, Results 1 and 3 show that LNB is more difficult than the other learning patterns,
and that this difficulty does not diminish with experience. One possible explanation is that
making a correct matching decision in LNB requires the firm to go through three steps: (i)

identifying which worker-firm pair can potentially match in some states, (ii) waiting sufficiently
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long to verify the absence of the match, and (iii) correctly updating beliefs about the state
based on observed non-matching outcomes. Failure at any of these steps may lead to an
incorrect match. As a result, correct matching in LNB is substantially more challenging than
in CE and LB, where firms only need to perform a single state-inference step based on market
activities (step (iii)). Results 5 and 6 support this explanation in two complementary ways:
first, failures at any step are likely to generate Undermatch outcomes (Result 5); while the

waiting requirement in step (ii) leads to a longer time to match in LNB (Result 6).

Second, Results 2 and 4 indicate that the Partial subtype is easier than the Full subtype
in both LB and LNB. Recall that the benchmark payoff (the worst case payoff from staying
unmatched) is zero. One potential explanation stems from loss aversion, which may be
particularly pronounced in our design, where small positive payoffs coexist with relatively
large negative ones. When a firm makes an effort to draw inferences, they may focus more
on avoiding negative payoffs rather than on confirming positive ones, even though these
considerations are theoretically equivalent. For example, it may be more difficult to rule out
the two negative outcomes (—4 and —8), as in the potential payoff vector (2, —4, —8) under
Full, than to rule out a single negative outcome (—8), as in (2,4, —8) under Partial. A related
but distinct explanation focuses on the state complexity rather than on payoff magnitudes.
Given a uniform prior over the three states, (1/3,1/3,1/3), a match is more likely to be
correct (i.e., to generate positive payoffs) in the Partial subtype (2,4, —8) than in the Full
subtype (2, —4, —8). By effectively reducing the number of adverse states that must be ruled
out, the Partial subtype simplifies the inference problem faced by firms, thereby increasing the

likelihood of correct matching.

5 Discussions

5.1 Alternative stability notions

In matching theory with one-sided incomplete information, there have been a few stability
notions since Liu et al. (2014), including those of Chen and Hu (2020), Liu (2020), Pomatto
(2022), Wang (2023), and Chen and Hu (2024). They are all closely connected. Our theoretical
prediction belongs to this class via Chen and Hu (2020, 2024).
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Liu et al. (2014) formalized the first cooperative stability notion in a prior-free model.
More precisely, when a firm faces uncertainty over the type profile of workers and evaluates a
potential employee, she is willing to form a new match with that potential employee only if
the match yields a higher ex post payoff than the firm’s status quo match under all possible
(reasonable) type profiles. Liu et al. (2014) start with the set of all individual rational matchings
and iteratively exclude matchings that are clearly blocked in the above sense. They define
the limit of this procedure—iterative elimination of clearly blocked matchings—as the set of
incomplete information stable matchings. This approach resembles the idea of rationalizability
(Osborne and Rubinstein, 1994, Chapter 4) and circumvent the analysis of firm-specific beliefs.
Pomatto (2022) adopts an epistemic approach and proposes a stability notion that is equivalent

to Liu et al.’s notion.

Chen and Hu (2020) extends Liu et al. (2014) to incorporate flexible firm knowledge,
represented by information partitions. Unlike Liu et al. (2014) which concerns a stable set
of matchings, they focus on whether an individual matching is stable with the companion
information structure being stable as well. Nevertheless, their stability notion is also equivalent
to that of Liu et al. (2014) if we restrict attention to the set of stable matchings. This

equivalence is established in the prior-free setting.

Introducing a prior belief into Chen and Hu (2020) in a straightforward way yields the
model of Chen and Hu (2024). Their Bayesian stability notion turns out to be equivalent to
that of Liu (2020). Particularly, Liu (2020) defines stability of matching functions, each of
which specifies a matching (observable) for each type profile of workers (unobservable), which
shares the spirit of rational expectation equilibrium (Radner, 1979). In contrast, Chen and Hu
(2024) focus on the Bayesian stability of individual matchings (together with the companion
information structure). They show that Liu’s stable matching function can be translated
into a series of their stable matchings; conversely, any stable matching in their sense can be
induced from some stable matching function of Liu (2020). Wang (2023) establishes a similar

equivalence in a more general model.

Our theoretical prediction in Section 2.2 is clearly akin to Chen and Hu (2020, 2024).
The only major difference is that we assumed away transfers. Since our focus is on the stability

criterion and the learning patterns, instead of matching efficiency, a nontransferable utility
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setting is more suitable for experiment design (avoiding the screening role played by transfers).

5.2 Alternative approaches to decentralized matching

Other than the decentralized matching market in our experimental design, there are at least two
alternative approaches to decentralized matching: the “path-to-stability” approach following
Knuth (1976) and Roth and Vande Vate (1990), and the non-cooperative models of Haeringer
and Wooders (2011), Pais (2008), Suh and Wen (2008), Ferdowsian, Niederle and Yariv (2025),
Lauermann and Noldeke (2014) and Ferdowsian (2023). Our experimental design balances the

advantages of these approaches.

To be precise, consider a complete-information matching market where blocking pairs
are sequentially satisfied, without specifying the details of who proposes to whom and so on.
Knuth (1976) demonstrates that this dynamic matching process may generate indefinite cycles,
whereas Roth and Vande Vate (1990) shows that there is always at least one blocking path
that leads to a stable matching. An immediate corollary is that the process which randomly
satisfies blocking pairs (each with positive probability if there are many) will converge to a

stable matching with probability one.

When there is incomplete information, Chen and Hu (2020, 2024) argue that information
will be updated along a matching process. They replicate the convergence result of Roth
and Vande Vate (1990) by showing that there is always a “learning-and-blocking” path that
leads to an incomplete-information stable matching. This line of research maintains the
cooperative feature of blocking pairs and circumvents the strategic behavior of agents. A
specific assumption is that agents are myopic—they opt to form a new matching as long as a

blocking opportunity exists.

In contrast, agents’ strategies are explicitly modeled in Haeringer and Wooders (2011);
Pais (2008); Suh and Wen (2008); Ferdowsian, Niederle and Yariv (2025) (non-cooperative
decentralized matching), Lauermann and Noldeke (2014) (search with random meetings) and
Ferdowsian (2023) (multi-armed bandit problem). However, as Liu (2023, 2024) has argued,
cooperative models should have been more attractive as analytical tools for complex economic
applications involving incomplete information. One advantage is that it makes little ad hoc

(and thus diverse) assumptions about agents’ behavior.
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The decentralized matching markets in our experimental design make as little assumption
as possible while uniquely identifying all learning patterns. First, we construct the matching
environment so that each agent has only one potential partner. Choices therefore reduce to
whether to form a match or remain unmatched, rather than targeting which partner. This
feature rules out the complicated strategic behavior studied in the aforementioned papers.
Second, each matching market in our experiment has a unique incomplete-information stable
matching and there is a unique “learning-and-blocking” path from the autarky (no matches
and no information) to this stable matching. As a result, our design is robust to the specific

details of how matches are formed and how blocking pairs are selected.

5.3 Other decentralized implementations of stability notions

Most experimental studies of stability in matching markets test stability notions derived under
the assumption of complete information; see these notions in Roth and Sotomayor (1992).
While some experiments introduce incomplete information, it typically enters as an information

friction layered onto theories that assume complete information.

A first strand of the literature studies decentralized matching with transferable utility.
Under complete information, Otto and Bolle (2011), Dolgopolov et al. (2024), and He et al.
(2024) examine how agents share matching surplus in decentralized environments. Otto
and Bolle (2011) study repeated price bargaining in a two-by-two market and find frequent
inefficiency and instability. Dolgopolov et al. (2024) analyze convergence to the core under
different trading institutions, namely double auction, posted prices, and decentralized commu-
nication, in a three-by-three assignment market, finding strong support for core allocations but
weaker evidence for core prices. He et al. (2024) investigate how assortativity and “whether
equal split is in the core” affect stability and efficiency, showing that both—especially the

latter—significantly influence market performance.

Two papers study transferable-utility markets under incomplete information. Nalbantian
and Schotter (1995) examine decentralized matching where pairs negotiate salaries via phone
without knowing their match-specific surpluses. Agranov et al. (2025) compare complete- and
incomplete-information environments and show that incomplete information reduces both

efficiency and stability. In their incomplete-information treatments, agents know their own
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surplus profile but not which partners generate which surpluses, and they learn match values
only after an offer is accepted. Relative to our study, these papers focus primarily on stability
concepts and surplus allocation under complete information, rather than on testing stability

concepts derived for incomplete-information environments.

A second strand examines decentralized matching without transfers, closer to our setting.
Pais, Pintér and Veszteg (2020) study both complete- and incomplete-information environments,
where under incomplete information agents know only their own preferences, and find no
significant effect of incomplete information on stability or efficiency. Echenique, Robinson-
Cortés and Yariv (2025) focus on complete-information markets and study equilibrium selection
among multiple stable matchings. Although these papers consider nontransferable-utility
markets, they continue to test stability notions based on complete-information theory, with
incomplete information introduced only as an experimental friction. In contrast, our experiment
studies nontransferable-utility matching markets in which incomplete information arises from
uncertainty about states that determine agents’ preferences, and we explicitly test stability

concepts developed for matching under incomplete information.

5.4 Future directions

In existing decentralized implementations of stable matchings, experiments have mostly adopted
either free negotiation or communication (common in matching markets with transfers), or free
proposals, acceptances, and rejections with temporary matches that evolve until the market
unravels. While stability notions are well defined in theory, these decentralized processes
are largely outside the formal theoretical frameworks. A key limitation of such decentralized
approaches is the limited control over agents’ interim strategies prior to the formation of final
matches. A natural direction for future research is therefore to study structured dynamic
games, such as those proposed by Pais (2008), Suh and Wen (2008), and Haeringer and
Wooders (2011), and possibly incorporate some form of incomplete information as in Pomatto
(2022) or Ferdowsian, Niederle and Yariv (2025), in order to examine whether agents follow

the predicted strategies and achieve equilibrium outcomes in these formal settings.
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Appendix A Parameters
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Figure A.1: Parameter 1.
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Appendix B Experimental instructions and screenshots

In this appendix, we provide the experimental instructions and the experimental screenshots

that are translated from the original Chinese version.

B.1 Instructions (All treatments)

[Welcome| Welcome to this experiment! Please read the following introduction carefully.

This experiment will last approximately 70 minutes. During the experiment, please
remain silent and do not communicate with others in any way. If you have any questions,

please raise your hand, and an experimenter will assist you individually.

Before the experiment begins, you will be randomly assigned to a large group consisting
of 12 participants. This group will remain fixed throughout the entire experiment. Each
participant will sit alone at a computer terminal, and all decisions will be made on the
computer screen. The experiment is anonymous: neither the experimenters nor the other
participants will know which participant is seated at which station, nor will they be able to

link any decision to you or to anyone else in the room.

Because you arrived on time, you have received a participation fee of 20 yuan. You
will earn additional income during the experiment, depending on your own decisions and the
decisions of other participants. At the end of the experiment, your total earnings will be paid
to you privately.

Throughout the experiment, all earnings will be denominated in “yuan” (RMB).

[Roles and Grouping] Within each large group of 12 participants, you will be randomly assigned
to one of two roles: 6 participants will be “Fruits” and 6 participants will be “Colors.” These
roles remain fixed throughout the entire experiment—once assigned, you will always be either
a Fruit or a Color. The experiment consists of 20 rounds, each corresponding to a different
“matching game.” In each round, the 12 participants in the large group will be randomly
divided into three independent subgroups of 4 participants each. Each subgroup of 4 will
complete one matching game together. The composition of the 4-person subgroups is fully
random and independent across rounds; that is, the participants in your subgroup may vary

from round to round. At the beginning of every round, you receive an initial payoff of 10 yuan.
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[Matching Game and Matching Payoffs| Each matching game involves four participants: Lemon,
Mango, Yellow, and Green. If your role is “Fruit,” you will be randomly assigned to be either
Lemon or Mango each round. If your role is “Color,” you will be randomly assigned to be either
Yellow or Green each round. In each round, Fruits and Colors may form “matches,” and each
Fruit can match with at most one Color, while each Color can match with at most one Fruit.
For example, Lemon may match with Yellow, or with Green, or Lemon may remain unmatched.
Two Fruits cannot match with each other, and two Colors cannot match with each other.
“Weather” affects the payoffs from matching. Each round’s weather may be Sunny, Cloudy, or
Rainy, with equal probability (33.33% each). The weather is determined independently each
round by the computer. At the beginning of each round, the two Fruits will learn the weather,
while the two Colors will not. The payoffs for each possible Fruit—Color match are shown in a
“Matching Payoff Table.” In the example below, you can find the payoff for any Fruit—Color
pair at the corresponding cell of the table. Each cell contains three rows: the first row lists the
payoffs under Sunny weather, the second row under Cloudy, and the third row under Rainy.
Each row contains two numbers: the first number is the Fruit’s payoff, and the second number
is the Color’s payoff. For example:

o If Lemon matches with Yellow and the weather is Sunny, Lemon earns 3 yuan and Yellow
earns 1 yuan.

o If Lemon matches with Green and the weather is Cloudy, Lemon earns —7 yuan and Green
earns —6 yuan.

e If Mango matches with Yellow and the weather is Rainy, Mango earns —3 yuan and Yellow

earns —4 yuan.

Yellow Green
3 1 -6 -7 Sunny
Lemon 1 3 -7 -6 Cloudy
-1 -5 6 7 Sunny
Mango -4 =il 9 6 Cloudy

Figure B.1: Matching Payoff Table (Example)

If a participant does not match, the matching payoff is 0 yuan. For instance, in a
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4-person subgroup, if Lemon matches with Yellow, while Mango and Green remain unmatched,
and the weather is Sunny, then Lemon earns 3 yuan, Yellow earns 1 yuan, and Mango and

Green each earn 0 yuan.

[Matching Process and Final Payoffs| In the matching game, the four participants may freely
engage in three types of actions: sending invitations, accepting/rejecting invitations, and
breaking a temporary match. Details are as follows.

[Sending Invitations| Each participant may send a matching invitation to any participant of
the opposite role (i.e., Fruits may invite any Color, and Colors may invite any Fruit). The
invited participant immediately receives a notification showing the inviter’s identity; the other
participants do not observe this information. Before receiving a response (acceptance or
rejection), the inviter cannot send another invitation, but may receive invitations from others

and choose whether to accept or reject them.

[Accepting or Rejecting Invitations| Upon receiving an invitation, the invited participant has
15 seconds to respond:

o If the invited participant rejects the invitation, or does not respond within 15 seconds (which
counts as a rejection), the invitation expires.

o If the invited participant accepts within 15 seconds, the two participants form a temporary
match.

e During these 15 seconds, the invited participant may still send invitations to others.

[Temporary Matches, Final Matches, and Final Payoffs| If an invitation is sent and accepted,
a temporary match is formed. If the round has not ended, all matches are temporary. This
means:

e Participants in a temporary match may still send new invitations and may accept or reject
incoming invitations.

If a participant forms a new temporary match, any previous temporary match is automatically
dissolved.

e Fither participant in a temporary match may unilaterally break the match at any time; the
other party simply receives a notification.

The “Matching Payoff Table” is displayed to everyone, and the currently active temporary

matches within the 4-person subgroup are shown by a highlighted indicator at the corresponding
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cell—this information is public. At the end of the round, all temporary matches become final
matches:
e Participants in a final match receive: Final payoff = initial 10 yuan + matching payoff

e Participants without a match receive: Final payoff = initial 10 yuan

[When Does a Round End?| At the beginning of each round, a 60-second public countdown
starts (visible in the upper-left corner of the screen):

o If the public matching indicators remain unchanged for 60 consecutive seconds—meaning no
temporary match is formed and no existing temporary match is broken—then the round ends.
e Whenever any change occurs (a match is formed or broken), the 60-second countdown
restarts. Additionally, once a round has lasted at least 60 seconds, a button labeled “Agree to
Proceed to Next Round” becomes available. If all four participants in the subgroup press this
button, the round ends immediately without waiting for the countdown to expire. Note: Even
after pressing the “Agree” button, you may continue all matching actions until the round ends,

and you may also cancel your agreement.

[Number of Rounds and Total Earnings| You will play 20 matching games in total. All
procedures are identical across rounds; the only difference is the Matching Payoff Table, which
updates each round. Before the 20 official rounds, there will be one practice round. The
practice round is designed to help you become familiar with the procedure, and the earnings
from this practice round do not count toward your final payment. After each round ends, the
system automatically proceeds to the next round. In the new round, you will not be able to
view any payoff tables or outcomes from previous rounds. At the end of the experiment, the
computer will randomly select 4 out of the 20 rounds, and your earnings from those 4 rounds
will count toward your experiment payment. Your total payment = participation fee (20 yuan)

+ the sum of the final payoffs from the 4 randomly selected rounds.
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B.2 Screenshots

Experiment Round No. 2

Timer: 45s Only Lemon and Mango knows the weather. My Role: Green

Weather in this Round: Unknown for me

Matching Payoff Table

Yello Green
nding Invitation
2 -6 6 5 Sunny Send 9 GHONS
Please choose the Fruit you would like to invite:
Lemon -4 5 g 8 Cloudy
Lemon || Mango
-7 1 3 2 Rainy
5 1 -1 2 Sunny L. L.
Receiving Invitations
Mango < @ < © clersy Mango sent you an invitation.
8 6 7 -4 Rainy Please response within 10s:

Current "Temporary Matches" My Current "Temporary Match
See the highlighted cells in the Match Payoff Table <br>: Matching with Lem(?n. I"f ylou Wot"ld like to dissolve
Lemon matched with Green, Mango matched with Yellow., the match, please click *Dissolve".

Dissolve the Match

History "Temporary Matches"

At 76 seconds, Mango matched with Yellow.
At 70 seconds, Lemon matched with Green. o a
At 58 seconds, Lemon unmatched with Yellow. At 86 seconds, Mango sent me an invitation. 0
Aira At 70 seconds, | accepted Lemon's

invitation', | temporarily matched with

My Activity History

- >

..... Ao 0 ccoes samcnatelbad) codih Fones

| Agree to Proceed to Next Round

Figure B.2: A translated screenshot of the experiment
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Appendix C Supplemental figures and tables

In this appendix, we provide supplemental figures and tables, which are useful for understanding

the experimental results.
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Mistake Rate
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X

2.08% 1.56%

0.52%

Plain

Compound Plain CE LB LNB Compound

(a) All 20 rounds (b) Last 10 rounds

Figure C.1: Individual mistake rate by learning patterns

Table C.1: Individual mistake rates: pairwise tests across learning patterns

CE LB LNB Compound CE LB LNB Compound
Plain 0.044 0.657 < 0.001 0.001 Plain 0.083 0.317 < 0.001 0.002
CE 0.010 < 0.001 0.001 CE 0.655 < 0.001 0.005
LB 0.002 0.021 LB < 0.001 0.001
LNB 0.017 LNB 0.022
(a) All 20 rounds (b) Last 10 rounds

Notes: Each cell reports the p-value from a two-sided Wilcoxon signed-rank test performed at the matching-group level

(n = 16).
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ﬁ
Plain CE LB LNB Compound
(a) All rounds
28.12%
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B Partial

] CE+LB
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Figure C.2: Individual mistake rate by subtypes
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Table C.2: Individual mistake rates: pairwise tests across subtypes

CE LB LNB Compound
Full Partial ~ Full Partial Full Partial

Within Type 0.401 0.006 0.012 0.001
CE+LB  0.081 0.110  0.095 0.127

CE+LNB < 0.001 < 0.001 0.019  0.090
(a) All 20 rounds

CE LB LNB Compound
Full Partial Full Partial Full Partial

Within Type 0.317 0.564 0.006 0.009
CE+LB 0.706 0.180 0.317 0.180
CE+LNB 0.006 0.002 0.045  0.302

(b) Last 10 rounds

Notes: Each cell reports the p-value from a two-sided Wilcoxon signed-rank test performed at the matching-group level (n = 16).
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Figure C.3: Density of Final Correct Match Time
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Figure C.4: Hard-firm mistake type composition by learning pattern
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Figure C.5: Hard-firm cumulative mistake rate by round and by learning pattern
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